Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ligation of oligonucleotides by pyrimidine dimers—a missing ‘link’ in the origin of life?

Abstract

One of the principal photochemical reactions of DNA on exposure to UV is the formation of intrastrand cyclobutane-type pyrimidine dimmers1,2. The efficiency of this reaction depends on both the wavelength of the UV2 and the specific nucleotide sequence in the DNA3. The formation of the pyrimidine dimer and its repair in living cells have been studied extensively4. We have examined the possibility that pyrimidines at the ends of DNA strands may be adequately juxtaposed for dimer formation by the presence of a complementary strand, even when no phosphodiester linkage joins their sugars. In these conditions the formation of a dimer will ‘ligate’ two DNA strands end-to-end. We report here that thymidine oligonucleotides annealed to polydeoxyadenylate can be ligated end-to-end by UV irradiation, via thymine dimerization of the terminal nucleotides in adjacent oligonucleotides. The linkages are susceptible to direct photoreversal by 254 nm UV, as expected for cyclobutane-type thymine dimers, but they are not cleaved by the bacteriophage T4 endonuclease V, a dimer-specific DNA repair enzyme. We demonstrate that the ligating dimers are also resistant to photolyase from Escherichia coli. Although the phosphodiester backbone is not required for dimer formation, it is required for recognition of dimers by these DNA repair enzymes. We discuss the possibility that high molecular weight polynucleotides in primordial seas might have been generated from oligonucleotides by pyrimidine dimerization under the intense solar UV flux unattenuated by an ozone layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, K. C. & Hanawalt, P. C. Molecular Photobiology (Academic, New York, 1969).

    Google Scholar 

  2. Deering, R. A. & Setlow, R. B. Biochim. biophys. Acta 68, 526–531 (1963).

    Article  CAS  Google Scholar 

  3. Haseltine, W. A. et al. Nature 285, 634–641 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Hanawalt, P. C., Cooper, P. K., Ganesan, A. K. & Smith, C. A. A. Rev. Biochem. 48, 783–836 (1979).

    Article  CAS  Google Scholar 

  5. Wang, Shih Yi. Photochemistry and Photobiology of Nucleic Acids Vol. 2, 430 (Academic, New York, 1976).

    Google Scholar 

  6. Eisinger, J. et al. Proc. natn. Acad. Sci. U.S.A. 55, 1015–1020 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Rahn, R. O. & Landry, L. C. Photochem. Photobiol. 18, 29–38 (1973).

    Article  CAS  Google Scholar 

  8. Spencer, J. H. The Physics and Chemistry of DNA and RNA, 92 (Saunders, Philadelphia, 1972).

    Google Scholar 

  9. Janik, B. Physicochemical Characteristics of Oligonucleotides and Polynucleotides, 108–109 (Plenum, New York, 1971).

    Book  Google Scholar 

  10. Reynolds, R. J., Cook, K. H. & Friedberg, E. C. in DNA Repair: A Laboratory Manual of Research Procedures (eds Friedberg, E. C. & Hanawalt, P. C.) 11–22 (Dekker New York, 1981).

    Google Scholar 

  11. Haynes, F. N., Wilkins, D. L., Ratliff, R. L., Varghese, A. J. & Rupert, C. S. J. Am. chem. Soc. 93, 4940–4942 (1971).

    Article  Google Scholar 

  12. Sutherland, J. C. Photochem. Photobiol. 25, 435–440 (1977).

    Article  CAS  Google Scholar 

  13. Snapka, R. M. & Sutherland, B. M. Biochemistry 19, 4201–4208 (1980).

    Article  CAS  Google Scholar 

  14. Setlow, J. K. & Bollem, F. J. Biochim. biophys. Acta 157, 233–237 (1967).

    Article  Google Scholar 

  15. Freidberg, E. C. Mutat. Res. 15, 113–123 (1972).

    Article  Google Scholar 

  16. Seawell, P. C., Smith, C. A. & Ganesan, A. K. J. Virol, 35, 790–797 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tśo, P. O. Basic Principles in Nucleic Acid Chemistry Vol. 1 (Academic, New York, 1974).

    Google Scholar 

  18. Bridson, P. K. & Orgel, L. E. J. molec. Biol. 144, 567–577 (1980).

    Article  CAS  Google Scholar 

  19. Ibanez, J. D., Kimball, A. P. & Oro, J. Science 173, 444–446 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  21. Haselkorn, R. & Doty, P. J. biol. Chem. 236(10), 2738–2745 (1961).

    CAS  PubMed  Google Scholar 

  22. Peacock, A. C. & Dingman, C. W. Biochemistry 6(b), 1818–1827 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R., Hanawalt, P. Ligation of oligonucleotides by pyrimidine dimers—a missing ‘link’ in the origin of life?. Nature 298, 393–396 (1982). https://doi.org/10.1038/298393a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298393a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing