Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A relationship between replicon size and supercoiled loop domains in the eukaryotic genome

Abstract

In interphase nuclei and metaphase chromosomes, eukaryotic chromosomal DNA is arranged in negatively supercoiled loops whose length averages several tens of kilobases (kb). Supercoiling indicates that the loops are tenaciously bound at both ends through the periodic attachment of DNA to a non-histone protein structural support, termed the nuclear matrix, skeleton or cage in interphase nuclei and the scaffold in metaphase chromosomes1–16. The looped organization has been envisaged to be important in DNA replication2,11,15,17–25 and transcription26–28. We report here a close relationship between average loop length and replicon size in different animal and plant species. Autoradiographic experiments support the hypothesis that DNA synthesis occurs at fixed sites on the nuclear matrix15,20. We also describe a modification of the looped organization occurring during early embryonic development in Xenopus laevis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Piñon, R. & Salts, Y. Proc. natn. Acad. Sci. U.S.A. 74, 2850–2854 (1977).

    Article  ADS  Google Scholar 

  2. McCready, S. J., Godwin, J., Mason, D. W., Brazell, I. A. & Cook, P. R. J. Cell Sci. 46, 365–386 (1980).

    CAS  PubMed  Google Scholar 

  3. Benyajati, C. & Worcel, A. Cell 9, 393–407 (1976).

    Article  CAS  Google Scholar 

  4. Hartwig, M. Acta biol. med. germ. 37, 421–432 (1978).

    CAS  PubMed  Google Scholar 

  5. Marsden, M. P. F. & Laemmli, U. K. Cell 17, 849–858 (1979).

    Article  CAS  Google Scholar 

  6. Ide, T. Nakane, M., Anzai, K. & Andoh, T. Nature 258, 445–447 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Igo-Kemenes, T. & Zachau, H. G. Cold Spring Harb. Symp. quant. Biol. 42, 109–118 (1977).

    Article  Google Scholar 

  8. Okada, T. A. & Comings, D. E. Chromosoma 72, 1–14 (1979).

    Article  CAS  Google Scholar 

  9. Mattern, M. R. & Painter, R. B. Biochim. biophys. Acta 563, 293–305 (1979).

    Article  CAS  Google Scholar 

  10. Mattern, M. R. & Painter, R. B. Biochim. biophys. Acta 563, 306–312 (1979).

    Article  CAS  Google Scholar 

  11. Vogelstein, B., Pardoll, D. M. & Coffey, D. S. Cell 22, 79–85 (1980).

    Article  CAS  Google Scholar 

  12. Laemmli, U. K. et al. Cold Spring Harb. Symp. quant. Biol. 42, 351–360 (1977).

    Article  Google Scholar 

  13. McCready, S. J. Cox, B. S. & McLaughlin, C. S. Expl Cell Res. 108, 473–478 (1977).

    Article  CAS  Google Scholar 

  14. Cook, P. R. & Brazell, I. A. Nucleic Adids Res. 8, 2895–2906 (1980).

    Article  CAS  Google Scholar 

  15. Shaper, J. H. et al. Adv. Enzyme Regulation 17, 213–248 (1979).

    Article  CAS  Google Scholar 

  16. Comings, D. E. in The Cell Nucleus Vol. 4 (ed. Bush, H.) 345–371 (Academic, New York, 1978).

    Google Scholar 

  17. Wilkins, A. S. J. theor. Biol. 89, 715–717 (1981).

    Article  CAS  Google Scholar 

  18. Berezney, R. Expl Cell Res. 123, 411–414 (1979).

    Article  CAS  Google Scholar 

  19. Berezney, R. & Buchholtz, L. A. Expl Cell Res. 132, 1–13 (1981).

    Article  CAS  Google Scholar 

  20. Pardoll, D. M., Vogelstein, B. & Coffey, D. S. Cell 19, 527–536 (1980).

    Article  CAS  Google Scholar 

  21. Berezney, R. & Coffey, D. S. Science 189, 291–293 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Dijkwel, P. A., Mullenders, L. H. F. & Wanka, F. Nucleic Acids Res. 6, 219–230 (1979).

    Article  CAS  Google Scholar 

  23. Hunt, B. F. & Vogelstein, B. Nucleic Acids Res. 9, 349–363 (1981).

    Article  CAS  Google Scholar 

  24. Nelkin, B. D., Pardoll, D. M. & Vogelstein, B. Nucleic Acids Res. 8, 5623–5633 (1980).

    Article  CAS  Google Scholar 

  25. Buckler-White, A. J., Humphrey, G. W. & Pigiet, V. Cell 22, 37–46 (1980).

    Article  CAS  Google Scholar 

  26. Jackson, D. A., McCready, S. J. & Cook, P. R. Nature 292, 552–555 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Smith, G. R. Cell 24, 599–600 (1981).

    Article  CAS  Google Scholar 

  28. Robinson, S. I., Nelkin, B. D. & Volgelstein, B. Cell 28, 99–106 (1982).

    Article  CAS  Google Scholar 

  29. Edenberg, H. J. & Huberman, J. A. A. Rev. Genet. 9, 245–284 (1975).

    Article  CAS  Google Scholar 

  30. Dingman, C. W. J. theor. Biol. 38, 187–195 (1974).

    Article  Google Scholar 

  31. Callan, H. G. Phil. Trans. R. Soc. B181, 19–41 (1972).

    CAS  Google Scholar 

  32. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. Cold Spring Harb. Symp. quant. Biol. 38, 205–224 (1974).

    Article  CAS  Google Scholar 

  33. Huberman, J. A. & Riggs, J. D. J. molec. Biol. 39, 327–341 (1968).

    Article  Google Scholar 

  34. Van't Hof, J. Expl Cell Res. 93, 95–104 (1975).

    Article  CAS  Google Scholar 

  35. McFarlane, P. W. & Callan, H. G. J. Cell Sci. 13, 821–839 (1973).

    CAS  PubMed  Google Scholar 

  36. Hand, R. & Tamm, I. J. molec. Biol. 82, 175–183 (1974).

    Article  CAS  Google Scholar 

  37. Nieuwkoop, P. D. & Faber, J. Normal Tables of Xenopus laevis (North Holland, Amsterdam, 1967).

    Google Scholar 

  38. Funderud, S., Andreassen, R. & Haugli, F. Nucleic Acids Res. 6, 1417–1431 (1979).

    Article  CAS  Google Scholar 

  39. Rasch, E. M., Barr, H. J. & Rasch, R. W. Chromosoma 33, 1–18 (1971).

    Article  CAS  Google Scholar 

  40. Bachman, K. Chromosoma 37, 85–93 (1972).

    Article  Google Scholar 

  41. Buongiorno-Nardelli, M., Amaldi, F. & Lava-Sanchez, P. Nature new Biol. 238, 134–137 (1972).

    Article  CAS  Google Scholar 

  42. Van't Hof, J. & Sparrow, A. H. Proc. natn. Acad. Sci. U.S.A. 49, 897–902 (1963).

    Article  ADS  CAS  Google Scholar 

  43. Maul, G. G. & Deaven, L. J. Cell Biol. 73, 748–760 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buongiorno-Nardelli, M., Micheli, G., Carrĩ, M. et al. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 298, 100–102 (1982). https://doi.org/10.1038/298100a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298100a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing