Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomeres

Abstract

The transmission of signals between cells of the early preimplantation embryo may be important in the recognition of relative cell position, thereby influencing the direction of cell differentiation1–5. Gap junctional (water-permeable) channels may provide one route for such signal transmission6. A previous report7, in which intact, zona-free mouse embryos were impaled by microelectrodes, demonstrated that gap junction-mediated dye transfer and electrical continuity were absent between blastomeres of two- and four-cell embryos but appeared during the eight-cell stage. It is at the eight-cell stage that compaction occurs, during which cells polarize3, flatten on each other3,8 and show the first morphological evidence of intercellular junctions9,10. We report here the use of a simple, non-iontophoretic method to detect the passage of a low-molecular-weight dye between aggregated blastomeres of the early preimplantation mouse embryo. Cells are incubated in the nonfluorescent, non-polar reagent, 6-carboxyfluorescein diacetate (CFDA)11,12, which enters the cell freely, where it becomes entrapped following enzymatic conversion13 to the hydrophilic fluorophore 6-carboxyfluorescein (CF; molecular weight 370). The labelled cells may then be aggregated with unlabelled cells and the formation of communicating channels between cells is revealed by the passage of dye from labelled to unlabelled blastomeres. CFDA provides better results than previously used fluorescein esters14,15, which hydrolyse to a much less hydrophilic fluorophore that leaks from the cell relatively quickly11,15. Using CFDA we have confirmed that the capacity to form channels is lacking at all stages from the mature oocyte to the four-cell embryo but appears during the first 6 h of the eight-cell stage, preceding the fully compacted state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tarkowski, A. K. & Wroblewska, J. J. Embryol. exp. Morph. 18, 155–180 (1967).

    CAS  PubMed  Google Scholar 

  2. Hillman, N., Sherman, M. I. & Graham, C. F. J. Embryol. exp. Morph. 28, 263–278 (1972).

    CAS  PubMed  Google Scholar 

  3. Ziomek, C. A. & Johnson, M. H. Cell 21, 935–942 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Gardner, R. L. J. Embryol. exp. Morph. 28, 279–312 (1972).

    CAS  PubMed  Google Scholar 

  5. Rossant, J. J. Embryol. exp. Morph. 33, 991–1001 (1975).

    CAS  PubMed  Google Scholar 

  6. Lo, C. W. in Development in Mammals Vol. 4 (ed. Johnson, M. H.) 39–80 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  7. Lo, C. W. & Gilula, N. B. Cell 18, 399–409 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Lehtonen, E. J. Embryol. exp. Morph. 58, 231–249 (1980).

    CAS  PubMed  Google Scholar 

  9. Ducibella, T., Albertini, D. F., Anderson, E. & Biggers, J. D. Devl Biol. 45, 231–250 (1975).

    Article  CAS  Google Scholar 

  10. Magnuson, T., Jacobson, J. B. & Stackpole, C. W. Devl Biol. 67, 214–224 (1978).

    Article  CAS  Google Scholar 

  11. Bruning, J. W., Kardol, M. J. & Arentzen, R. J. immun. Meth. 33, 33–44 (1980).

    Article  CAS  Google Scholar 

  12. Van der Poel, J. J., Kardol, M. H., Goulmy, E., Blokland, E. & Bruning, J. W. Immun. Lett. 2, 187–193 (1981).

    Article  Google Scholar 

  13. Rotmann, B. & Papermaster, B. W. Proc. natn. Acad. Sci. U.S.A. 55, 134–141 (1966).

    Article  ADS  Google Scholar 

  14. Sellin, D. et al. Eur. J. Immun. 4, 189–193 (1974).

    Article  CAS  Google Scholar 

  15. Loewenstein, W. R. Biochim. biophys. Acta 560, 1–65 (1979).

    CAS  PubMed  Google Scholar 

  16. Whittingham, D. B. & Wales, R. G. Aust. J. biol. Sci. 22, 1065–1068 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. Gilula, N. B., Epstein, M. L. & Beers, W. H. J. Cell Biol. 78, 58–75 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Dahl, G., Azarnia, R. & Werner, R. Nature 289, 683–685 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Johnson, M. H. & Ziomek, C. A. J. Cell Biol. 91, 303–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Calarco, P. G. & Epstein, C. J. Devl Biol. 32, 208–213 (1973).

    Article  CAS  Google Scholar 

  21. Ducibella, T. & Anderson, E. Devl Biol. 47, 45–58 (1975).

    Article  CAS  Google Scholar 

  22. Reeve, W. J. D. & Ziomek, C. A. J. Embryol. exp. Morph. 62, 339–350 (1981).

    CAS  PubMed  Google Scholar 

  23. Pratt, H. P. M. in Development in Mammals Vol. 3 (ed. Johnson, M. H.) 83–129 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  24. Sheridan, J. D., Finbow, M. E. & Pitts, J. D. Expl Cell Res. 123, 111–117 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodall, H., Johnson, M. Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomeres. Nature 295, 524–526 (1982). https://doi.org/10.1038/295524a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295524a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing