Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluid evolution and graphite genesis in the deep continental crust

Abstract

Metamorphism in deep continental crust is often accompanied by carbon-rich, H2O-poor fluids1–5, and is characterized by the development of granulite facies mineral assemblages3–5. Graphite, a minor phase in many high-grade metamorphic rocks6–17, has also been recognized in recent xenoliths of deep crustal material18, demonstrating its presence in modern deep continental crust. Although graphite is most common in biotite schists, it has also been recorded in pyroxene gneisses, two feldspar-quartz pegmatites, marbles and quartzo-feldspathic gneisses11,15–19. The presence of supracrustal sequences in granulite facies regions6–19 suggests that the latter developed through progressive metamorphism and dehydration of shallow level crustal material. Much of this material must have experienced a metamorphic recrystallization in the amphibolite facies, accompanied by the development of hornblende. Although graphite in the high-grade rock may develop from oxidation of organic material, this may not be the most common means for graphite genesis. In much of West Greenland14 and in southern Norway12 the low-grade, hornblende-bearing material does not contain significant quantities of organic compounds, although graphite is found in higher-grade metamorphic equivalents. This strongly suggests that introducing CO2 into deep crustal material leads to fluid evolution and graphite formation. I outline here the evolution of fluid composition in the C–O–H system which is in equilibrium with common crustal mineral assemblages. Thermodynamic data for CO2–H2O mixtures20 and mineral components21 are used to model the chemical changes in fluid composition which accompany introduction of CO2 into various types of rock. The results demonstrate that graphite genesis is a direct consequence of deep crustal metamorphism in the presence of a CO2-rich fluid phase. In addition, the calculations demonstrate that the deep continental crust will not be a reservoir for large volumes of methane-rich gas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Touret, J. Lithos 4, 423–436 (1971).

    Article  ADS  Google Scholar 

  2. Goldsmith, J. R. Bull. geol. Soc. Am. 87, 161–168 (1976).

    Article  CAS  Google Scholar 

  3. Hollister, L. S. Can. J. Earth Sci. 12, 1953–1955 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Newton, R. C., Smith, J. V. & Windley, B. Nature 288, 45–52 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Glassley, W. E. & Sørensen, K. J. Petrol. 21, 69–105 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Rao, J. S .R. K. & Rao, V. M. Econ. Geol. 60, 1046–1051 (1965).

    Article  CAS  Google Scholar 

  7. Katz, M. B. Int. geol. Congr. 24, 43–50 (1972).

    Google Scholar 

  8. Dobner, A., Graf, W., Hahn-Weinheiner, P. & Hirner, A. Lithos 11, 251–255 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Bessaire, H. in The Precambrian Vol. 3, 133–142 (Wiley, New York, 1967).

    Google Scholar 

  10. Dougan, T. W. Contr. Miner. Petrol. 46, 169–188 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Heier, K. S. Norg. geol Unders. 207 (1960).

  12. Andreae, M. O. Contr. Miner. Petrol. 47, 299–316 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Barejee, P. K. & Ghosh, S. Econ. Geol. 67, 55–62 (1972).

    Article  Google Scholar 

  14. Escher, A., Sørensen, K. & Zeck, H. P. The Geology of Greenland, 76–103 (Geological Survey of Greenland, Copenhagen, 1976).

    Google Scholar 

  15. Ailing, H. G. Bull. N.Y.S. Mus. 199, 1–150 (1917).

    Google Scholar 

  16. Cameron, E. N. & Weiss, P. L. Bull. U.S. geol. Surv. 1082-E (1962).

  17. Wynne-Edwards, H. R. Geol. Surv. Can. Mem. 346 (1967).

  18. Padovani, E. & Carter, N. Am. geophys. Un. Monogr. Ser. 20, 19–55 (1977).

    CAS  Google Scholar 

  19. Glassley, W. E. & Winter, J. K. EOS 61, 384 (1980).

    Google Scholar 

  20. Kerrick, D. M. & Jacobs, G. K. Am. J. Sci. 281, 735–767 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Helgeson, H. C., Delaney, J. M., Nesbitt, H. W. & Bird, D. K. Am. J. Sci. 278 A, 229 p. (1978).

    Google Scholar 

  22. Flowers, G. Contr. Miner. Petrol. 69, 315–318 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Ryzhenko, B. N. & Volkov, V. P. Geochem. Int. 1971, 468–481 (1971).

  24. Wones, D. R. Am. Miner. 57, 316–317 (1972).

    CAS  Google Scholar 

  25. Winchell, A. N. Econ. Geol. 6, 218–230 (1911).

    Article  Google Scholar 

  26. Ford, R. B. Econ. Geol. 49, 31–43 (1954).

    Article  CAS  Google Scholar 

  27. Mueller, R. F. & Condie, K. C. J. Geol. 72, 400–411 (1964).

    Article  ADS  CAS  Google Scholar 

  28. Strens, R. G. J. Geol. Mag. 102, 393–406 (1965).

    Article  ADS  CAS  Google Scholar 

  29. Salotti, C. A., Heinrich, E.-W. & Giardini, A. A. Econ. Geol. 66, 929–932 (1971).

    Article  CAS  Google Scholar 

  30. Nagy, B., Zumberge, J. E. & Nagy, L. A. Proc. natn. Acad. Sci. U.S.A. 72, 1206–1209 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Wada, H. Geochem. J. 11, 183–197 (1977).

    Article  CAS  Google Scholar 

  32. Gold, T. J. petrol. Geol. 1, 3–19 (1979).

    Article  ADS  CAS  Google Scholar 

  33. Soter, S. & Gold, T. Scient. Am. 243, 154–170 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassley, W. Fluid evolution and graphite genesis in the deep continental crust. Nature 295, 229–231 (1982). https://doi.org/10.1038/295229a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295229a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing