Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cortical area MT and the perception of stereoscopic depth

Abstract

Stereopsis is the perception of depth based on small positional differences between images formed on the two retinae (known as binocular disparity). Neurons that respond selectively to binocular disparity were first described three decades ago1,2, and have since been observed in many visual areas of the primate brain, including V1, V2, V3, MT and MST3,4,5,6,7,8. Although disparity-selective neurons are thought to form the neural substrate for stereopsis, the mere existence of disparity-selective neurons does not guarantee that they contribute to stereoscopic depth perception. Some disparity-selective neurons may play other roles, such as guiding vergence eye movements9,10. Thus, the roles of different visual areas in stereopsis remain poorly defined. Here we show that visual area MT is important in stereoscopic vision: electrical stimulation of clusters of disparity-selective MT neurons can bias perceptual judgements of depth, and the bias is predictable from the disparity preference of neurons at the stimulation site. These results show that behaviourally relevant signals concerning stereoscopic depth are present in MT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MT neurons are clustered according to disparity selectivity.
Figure 2: Depth-discrimination task.
Figure 3: Microstimulation of MT biases depth judgements.
Figure 4: Summary of microstimulation effects from 65 experiments using two monkeys.

Similar content being viewed by others

References

  1. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    Article  CAS  Google Scholar 

  2. Pettigrew, J. D., Nikara, T. & Bishop, P. O. Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6, 391–410 (1968).

    CAS  PubMed  Google Scholar 

  3. Hubel, D. H. & Wiesel, T. N. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225, 41–42 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Poggio, G. F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Poggio, G. F., Gonzalez, F. & Krause, F. Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J. Neurosci. 8, 4531–4550 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Felleman, D. J. & Van Essen, D. C. Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J. Neurophysiol. 57, 889–920 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Roy, J. P., Komatsu, H. & Wurtz, R. H. Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cumming, B. G. & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389, 280–283 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Masson, G. S., Busettini, C. & Miles, F. A. Vergence eye movements in response to binocular disparity without depth perception. Nature 389, 283–286 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Albright, T. D. Cortical processing of visual motion. Rev. Oculomotor Res. 5, 177–201 (1993).

    CAS  Google Scholar 

  12. Albright, T. D., Desimone, R. & Gross, C. G. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51, 16–31 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Salzman, C. D., Murasugi, C. M., Britten, K. H. & Newsome, W. T. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salzman, C. D. & Newsome, W. T. Neural mechanisms for forming a perceptual decision. Science 264, 231–237 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. DeAngelis, G. C., Groh, J. M. & Newsome, W. T. Organization of disparity selectivity in macaque area MT. Soc. Neurosci. Abstr. 22, 717 (1996).

    Google Scholar 

  16. Cox, D. R. & Snell, E. J. Analysis of Binary Data (Chapman and Hall, London, (1989)).

    MATH  Google Scholar 

  17. Bradley, D. C., Chang, G. C. & Andersen, R. A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392, 714–717 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Dodd, J. V., Cumming, B. G., Newsome, W. T. & Parker, A. J. Firing of V5 (MT) neurons reliably covaries with reported 3-D configuration in a perceptually-ambiguous structure-from-motion task. Soc. Neurosci. Abstr. 23, 1125 (1997).

    Google Scholar 

  19. Schiller, P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717–746 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson, D. A. Amethod of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  PubMed  Google Scholar 

  22. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Murasugi, C. M., Salzman, C. D. & Newsome, W. T. Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J. Neurosci. 13, 1719–1729 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Stein and C. Doane for technical assistance, and A. Parker, J. Dodd, B.Wandell, J. Nichols, E. Siedemann, G. Horwitz, and C. Barberini for critical review of the manuscript. G.C.D. was supported by a Medical Research Fellowship from the Bank of America/Giannini Foundation, an NRSA from the National Eye Institute, and a Career Award in the Biomedical Sciences from the Burroughs-Wellcome Fund. B.G.C. is a Royal Society Research Fellow, and W.T.N. is an Investigator of the Howard Hughes Medical Institute. This work was also supported by the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Newsome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeAngelis, G., Cumming, B. & Newsome, W. Cortical area MT and the perception of stereoscopic depth. Nature 394, 677–680 (1998). https://doi.org/10.1038/29299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29299

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing