Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct analysis of the chromosome constitution of human spermatozoa

Abstract

ALL available information on the chromosome constitution of human gametes is speculative, having been obtained by inference from the chromosome constitution of conceptuses that survive sufficiently long to produce a clinically recognisable pregnancy. A minimum of 10% of all recognised human conceptions are chromosomally abnormal, and it has been estimated that 1–2% are the result of fertilisation by a spermatozoon with a chromosome abnormality1. Cytological evaluation of the chromosome constitution of human spermatozoa has been restricted to the staining of fixed smears of whole sperm2–13. Certain chromosome regions with peculiar staining properties, such as the long arm of the Y chromosome and the heterochromatic region of chromosome 9, are presumed to be represented in appropriately stained sperm nuclei by differentially staining spots. By counting the number of these spots per nucleus, the frequency of aneuploidy in the sperm of normal males has been estimated to be around 40% (refs 5, 9–11). The precision of the data obtained from stained whole sperm is dubious, because several factors must be taken into consideration when blobs are counted in sperm head nuclei, all of which could contribute to biased estimates of nondisjunction7,8,12. For this reason, some claims have now been retracted12,13. To investigate the true contribution of male gametes to the production of chromosomally abnormal conceptuses and the factors influencing the production and survival of chromosomally abnormal sperm, it is necessary to analyse the sperm chromosomes directly. However, after meiotic metaphase II sperm chromosomes do not reappear until the male and female pronuclei of the fertilised egg prepare for the first cleavage division. We report here the use of hamster eggs to activate human sperm to the point where their chromosomes can be studied directly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobs, P. A. in Proc. Int. Symp., The Genetics of the Spermatozoon (eds Beatty, R. A. & Gluecksohn-Waelsh, S.) 346–358 (Edinburgh, 1971).

    Google Scholar 

  2. Pearson, P. L. & Bobrow, M. J. Reprod. Fert. 22, 177–179 (1970).

    Article  CAS  Google Scholar 

  3. Barlow, P. & Vosa, C. G. Nature 226, 961–962 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Sumner, A. T., Robinson, J. A. & Evans, H. J. Nature new Biol. 229, 231–233 (1971).

    Article  CAS  Google Scholar 

  5. Pawlowitzki, I. H. & Pearson, P. L. Humangenetik 16, 119–122 (1972).

    Article  CAS  Google Scholar 

  6. Beatty, R. A. Biol. J. Linnean Soc. 7, Suppl. 1, 291–299 (1975).

    Google Scholar 

  7. Roberts, A. M. & Goodall, H. Nature 262, 493–494 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Schwinger, E., Ites, J. & Korte, B. Hum. Genet. 34, 265–270 (1976).

    Article  CAS  Google Scholar 

  9. Pearson, P. L., Geraedts, J. P. M. & Pawlowitzki, I. H. in Les Accidents Chromosomiques de la Reproduction (eds Boué, A. & Thibault, C.) 219–229 (INSERM, Paris, 1973).

    Google Scholar 

  10. Geraedts, J. & Pearson, P. Bull. Eur. Soc. hum. Genet. 24–31 (1973).

  11. Evans, H. J. in Proc. Int. Symp., The Genetics of the Spermatozoon (eds Beatty, R. A. & Gluecksohn-Waelsh, S.) 144–159 (Edinburgh, 1971).

    Google Scholar 

  12. Beatty, R. A. Cytogenet. Cell Genet. 18, 33–49 (1977).

    Article  CAS  Google Scholar 

  13. Sumner, A. T. & Robinson, J. A. J. Reprod. Fert. 48, 9–15 (1976).

    Article  CAS  Google Scholar 

  14. Sawicki, W. & Koprowski, H. Expl Cell Res. 66, 145–151 (1971).

    Article  CAS  Google Scholar 

  15. Phillips, S. G. & Phillips, D. M. J. Cell Biol. 63, 269a (1974).

    Google Scholar 

  16. Bendich, A., Borenfreund, E. & Sternberg, S. S. Science 183, 857–859 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Elsevier, S. M. & Ruddle, F. H. Chromosoma 56, 227–241 (1976).

    Article  CAS  Google Scholar 

  18. Johnson, R. T., Rao, P. N. & Hughes, H. D. J. Cell Physiol. 76, 151–158 (1970).

    Article  CAS  Google Scholar 

  19. Gledhill, B. L., Sawicki, W., Croce, C. M. & Koprowski, H. Expl Cell Res. 73, 33–40 (1972).

    Article  CAS  Google Scholar 

  20. Yanagimachi, R., Yanagimachi, H. & Rogers, B. J. Biol. Reprod. 15, 471–476 (1976).

    Article  CAS  Google Scholar 

  21. Biggers, J. D., Whitten, W. K. & Whittingham, D. G. in Methods in Mammalian Embryology (ed. Daniel, J. C. Jr) 86 (Freeman, San Francisco, 1971).

    Google Scholar 

  22. Knowland, J. & Graham, C. J. Embryol. exp. Morph. 27, 167–176 (1978).

    Google Scholar 

  23. Tarkowski, A. K. Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  24. Sumner, A. T. Expl Cell Res. 75, 304–306 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RUDAK, E., JACOBS, P. & YANAGIMACHI, R. Direct analysis of the chromosome constitution of human spermatozoa. Nature 274, 911–913 (1978). https://doi.org/10.1038/274911a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274911a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing