Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleosome structure controls rates of excision repair in DNA of human cells

Abstract

EUKARYOTIC chromatin is now considered to be composed of structural units, nucleosomes (nu bodies), which consist of four pairs of histones around which DNA is coiled1–3. Approximately 200 base pairs of DNA are associated with each nucleosome, 140 base pairs are wrapped around each and a variable length of approximately 40 base pairs lies between1–3. The DNA wrapped around each nucleosome is less easily digested by micrococcal nuclease than the DNA between them, and brief periods of incubation with the enzyme allow isolation of nucleosomes as discrete particles2. The structural organisation of mammalian DNA into nucleosomes, and higher degrees of order in the packing of strings of nucleosomes into chromosomal fibres has been shown to play a major part in the control of DNA replication4,5, and transcription6. Previous studies have indicated that the accessibility of damage in DNA to repair enzymes is restricted by chromatin proteins7,8 and it is therefore likely that the repair of damaged sites in DNA is also controlled by some features of nucleosome structure and packing9. In the study described here I have measured the rates of degradation of repaired regions in mammalian DNA by micrococcal nuclease; the results suggest that the first sites of ultraviolet light-induced damage to be repaired are those in the DNA between nucleosomes and that there is little rearrangement of nucleosomes along the DNA during repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Noll, M. Nature 251, 249–251 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Olins, A. L., Carlson, R. D., Wright, E. B. & Olins, D. E. Nucleic Acids Res. 3, 3271–3291 (1976).

    Article  CAS  Google Scholar 

  3. Oudet, P., Gross-Bellard, M. & Chambon, P. Cell 4, 281–300 (1975).

    Article  CAS  Google Scholar 

  4. Weintraub, H. Cold Spring Harbor Symp. quant. Biol. 38, 247–256 (1973).

    Article  Google Scholar 

  5. Searle, R. L. Cell 9, 423–429 (1976).

    Article  Google Scholar 

  6. Piper, P. W. et al. Nucleic Acids Res. 3, 493–505 (1976).

    Article  CAS  Google Scholar 

  7. Wilkins, R. J. & Hart, R. W. Nature 247, 35–36 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Mortelmans, K., Friedberg, E. C., Slor, H., Thomas, G. H. & Cleaver, J. E. Proc. natn. Acad. Sci. U.S.A. 73, 2757–2761 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Cleaver, J. E. in Molecular Human Cytogenetics ICN/UCLA Symposium (in the press).

  10. Cleaver, J. E. Adv. Radiat. Biol. 4, 1–75 (1974).

    Article  CAS  Google Scholar 

  11. Cleaver, J. E. Meth. Cancer Res. 9, 123–165 (1976).

    Google Scholar 

  12. Bodell, W. J. Nucleic Acids Res. 4, 2619–2628 (1977).

    Article  CAS  Google Scholar 

  13. Sciudero, D. & Strauss, B. Mutat. Res. 35, 311–324 (1976).

    Article  Google Scholar 

  14. Patrick, M. H. & Gray, D. M. Photochem. Photobiol. 24, 507–513 (1976).

    Article  CAS  Google Scholar 

  15. Cleaver, J. E. Nature 218, 652–656 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Regan, J. D., Setlow, R. B. & Ley, R. Proc. natn. Acad. Sci. U.S.A. 68, 708–712 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Paterson, M. C., Lohman, P. H. M. & Sluyter, M. L. Mutat. Res. 19, 245–256 (1973).

    Article  CAS  Google Scholar 

  18. Cleaver, J. E. Photochem. Photobiol. 12, 17–28 (1970).

    Article  CAS  Google Scholar 

  19. Cleaver, J. E., Thomas, G. H., Trosko, J. E. & Lett, J. T. Expl Cell Res. 74, 67–80 (1972).

    Article  CAS  Google Scholar 

  20. Smith, C. A. & Hanawalt, P. C. Biochim. biophys. Acta 447, 121–132 (1975).

    Article  Google Scholar 

  21. Cleaver, J. E. Proc. natn. Acad. Sci. U.S.A. 69, 428–435 (1969).

    Article  ADS  Google Scholar 

  22. Haynes, R. H. Radiat. Res. Suppl. 6, 232 (1966).

    Google Scholar 

  23. Gianelli, F. & Pawsey, S. A. J. Cell Sci. 15, 163–176 (1974).

    Google Scholar 

  24. Ahmed, F. E. & Setlow, R. B. Proc. natn. Acad. Sci. U.S.A. 74, 1548–1552 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Cleaver, J. E. & Bootsma, D. A. Rev. Gen. 9, 19–38 (1975).

    Article  CAS  Google Scholar 

  26. Kraemer, K. H., Andrews, A. D., Barrett, S. F. & Robbins, J. H. Biochim. biophys. Acta 442, 147–153 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLEAVER, J. Nucleosome structure controls rates of excision repair in DNA of human cells. Nature 270, 451–453 (1977). https://doi.org/10.1038/270451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing