Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Establishment and function of chromatin organization at replication origins

Abstract

The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase—the minichromosome maintenance (MCM) complex—at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2,3,4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ORC is a master regulator of nucleosome organization at origins of replication.
Fig. 2: ORC plus remodeller generates NFR-array patterns at most origins.
Fig. 3: Effects of Orc1 mutations on cell viability, complex formation, origin DNA binding and MCM loading.
Fig. 4: Chromatin defects due to Orc1 mutations correlate with replication defects.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). The raw and processed files from the high-throughput sequencing data have been deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) with the accession number GSE209681.

References

  1. Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berbenetz, N. M., Nislow, C. & Brown, G. W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 6, e1001092 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rossi, M. J. et al. A high-resolution protein architecture of the budding yeast genome. Nature 592, 309–314 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Broach, J. R. et al. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb. Symp. Quant. Biol. 47, 1165–1173 (1983).

    Article  PubMed  Google Scholar 

  6. Siow, C. C., Nieduszynska, S. R., Müller, C. A. & Nieduszynski, C. A. OriDB, the DNA replication origin database updated and extended. Nucleic Acids Res. 40, 682–686 (2012).

    Article  Google Scholar 

  7. Nieduszynski, C. A., Knox, Y. & Donaldson, A. D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874–1879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, W., Aparicio, J. G., Aparicio, O. M. & Tavaré, S. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7, 276 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liachko, I., Youngblood, R. A., Keich, U. & Dunham, M. J. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Res. 23, 698–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Azmi, I. F. et al. Nucleosomes influence multiple steps during replication initiation. eLife 6, e22512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kurat, C. F., Yeeles, J. T. P., Patel, H., Early, A. & Diffley, J. F. X. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartley, P. & Madhani, D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Oberbeckmann, E. et al. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat. Commun. 12, 3232 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagai, S., Davis, R. E., Mattei, P. J., Eagen, K. P. & Kornberg, R. D. Chromatin potentiates transcription. Proc. Natl Acad. Sci. USA 114, 1536–1541 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kornberg, R. D. & Lorch, Y. Primary role of the nucleosome. Mol. Cell 79, 371–375 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Oberbeckmann, E. et al. Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat. Commun. 12, 3231 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oberbeckmann, E. et al. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res. 29, 1996–2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Barnes, T. & Korber, P. The active mechanism of nucleosome depletion by poly(dA:dT) tracts in vivo. Int. J. Mol. Sci. 22, 8233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, A. K., Schauer, T., Pfaller, L., Straub, T. & Mueller-Planitz, F. The biogenesis and function of nucleosome arrays. Nat. Commun. 12, 7011 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Ioannes, P. et al. Structure and function of the Orc1 BAH–nucleosome complex. Nat. Commun. 10, 2894 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Müller, P. et al. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev. 24, 1418–1433 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klemm, R. D., Austin, R. J. & Bell, S. P. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 88, 493–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Bowers, J. L., Randell, J. C. W., Chen, S. & Bell, S. P. ATP hydrolysis by ORC catalyzes reiterative Mcm2–7 assembly at a defined origin of replication. Mol. Cell 16, 967–978 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Evrin, C. et al. In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2–7 hexamer dimerization. Nucleic Acids Res. 41, 3162–3172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klemm, R. D. & Bell, S. P. ATP bound to the origin recognition complex is important for preRC formation. Proc. Natl Acad. Sci. USA 98, 8361–8367 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coster, G., Frigola, J., Beuron, F., Morris, E. P. & Diffley, J. F. X. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol. Cell 55, 666–677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, N. et al. Structure of the origin recognition complex bound to DNA replication origin. Nature 559, 217–222 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Feng, X. et al. The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat. Commun. 12, 2894 (2021).

    Article  ADS  Google Scholar 

  39. Haberle, V. et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507, 381–385 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soriano, I., Morafraile, E. C., Vázquez, E., Antequera, F. & Segurado, M. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics 15, 791 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tsankov, A. M., Thompson, D. A., Socha, A., Regev, A. & Rando, O. J. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8, e1000414 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsankov, A., Yanagisawa, Y., Rhind, N., Regev, A. & Rando, O. J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21, 1851–1862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan, C., Chen, H. & Bai, L. Systematic study of nucleosome-displacing factors in budding yeast. Mol. Cell 71, 294–305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donovan, B. T., Chen, H., Jipa, C., Bai, L. & Poirier, M. G. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors. eLife 8, e43008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fernandez Garcia, M. et al. Structural features of transcription factors associating with nucleosome binding. Mol. Cell 75, 921–932.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh, L. J. et al. A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol. Cell 82, 2098–2112.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Li, S. et al. Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Proc. Natl Acad. Sci. USA 119, e2211568119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bell, S. P., Mitchell, J., Leber, J., Kobayashi, R. & Stillman, B. The multidomain structure of Orc1 p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83, 563–568 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Gavin, K. A., Hidaka, M. & Stillman, B. Conserved initiator proteins in eukaryotes. Science 270, 1667–1671 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Parker, M. W. et al. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 8, e48562 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jaremko, M. J., On, K. F., Thomas, D. R., Stillman, B. & Joshua-Tor, L. The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. eLife 9, e58622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res. 29, 407–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, C. S. K. et al. Humanizing the yeast origin recognition complex. Nat. Commun. 12, 33 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, S. et al. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat. Commun. 13, 4947 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones, G. M. et al. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods 5, 239–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Krietenstein, N., Wippo, C. J., Lieleg, C. & Korber, P. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol. 513, 205–232 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Ruone, S., Rhoades, A. R. & Formosa, T. Multiple Nhp6 molecules are required to recruit Spt16–Pob3 to form yFACT complexes and to reorganize nucleosomes. J. Biol. Chem. 278, 45288–45295 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Kingston, I. J., Yung, J. S. Y. & Singleton, M. R. Biophysical characterization of the centromere-specific nucleosome from budding yeast. J. Biol. Chem. 286, 4021–4026 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Simon, R. H. & Felsenfeld, G. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 6, 689–696 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen, X. Preparation and analysis of the INO80 complex. Methods Enzymol. 377, 401–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Vary, J. C., Fazzio, T. G. & Tsukiyama, T. Assembly of yeast chromatin using ISWI complexes. Methods Enzymol. 375, 88–102 (2003).

    Article  Google Scholar 

  63. Wittmeyer, J., Saha, A. & Cairns, B. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex. Methods Enzymol. 377, 322–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bantele, S. C. S., Ferreira, P., Gritenaite, D., Boos, D. & Pfander, B. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection. Elife 6, e21687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Biswas, D., Yu, Y., Prall, M., Formosa, T. & Stillman, D. J. The yeast FACT complex has a role in transcriptional initiation. Mol. Cell. Biol. 25, 5812–5822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chacin, E. et al. A CDK-regulated chromatin segregase promoting chromosome replication. Nat. Commun. 12, 5224 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frigola, J., Remus, D., Mehanna, A. & Diffley, J. F. X. ATPase-dependent quality control of DNA replication origin licensing. Nature 495, 339–343 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Callebaut, I., Courvalin, J. C. & Mornon, J. P. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 446, 189–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, 329–337 (2018).

    Article  Google Scholar 

  70. Lieleg, C. et al. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol. Cell. Biol. 35, 1588–1605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dechassa, M. L. et al. Architecture of the SWI/SNF–nucleosome complex. Mol. Cell. Biol. 28, 6010–6021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Almer, A. & Hörz, W. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5, 2681–2687 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Remus, D. et al. Concerted loading of Mcm2–7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Evrin, C. et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl Acad. Sci. USA 106, 20240–20245 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yeeles, J. T. P., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. X. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernández-Cid, A. et al. An ORC/Cdc6/MCM2–7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol. Cell 50, 577–588 (2013).

    Article  PubMed  Google Scholar 

  77. Reusswig, K. et al. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat. Commun. 13, 7014 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chereji, R. V., Bryson, T. D. & Henikoff, S. Quantitative MNase-seq accurately maps nucleosome occupancy levels. Genome Biol. 20, 198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Blum and S. Krebs (LAFUGA) for high-throughput sequencing; E. Oberbeckmann for her support during the initial phases of the project; E. Kocar and G. Linder for help in purifying some proteins; S. Härtel for growing cells and preparing powder for protein preparations; J. Diffley for strains and plasmids; A. Singh and F. Müller-Planitz for strains and for sharing unpublished results; F. Bleichert for sharing Drosophila ORC; A. Costa and O. Willhoft for discussing results; and J. Kurat for critical input and for carefully reading the manuscript. This work was funded by the Deutsche Forschungsgemeinschaft (DFG)—the German Research Foundation—project ID 213249687—SFB 1064 to C.F.K., P.K. and B.P. and PF794/5-1 to B.P. Work in the B.P. laboratory is supported by the Max-Planck-Gesellschaft and the German Aerospace Center (DLR).

Author information

Authors and Affiliations

Authors

Contributions

E.C. set up the assay, purified most of the proteins, did most of the in vitro work and all of the in vivo MNase–seq experiments, analysed the sequencing data, helped with co-immunoprecipitation experiments and prepared the figures. K.-U.R. performed flow cytometry analyses. J.F. generated all the in vivo orc1 mutants. L.K. purified and characterized Fun30. P.B. made the expression strain and purified Spt6. T.S. generated the heat maps. C.F.K. performed in vitro replication assays, helped with co-immunoprecipitation experiments and wrote the paper with substantial input from P.K. P.K., B.P. and C.F.K. secured funding, analysed the data and contributed intellectually to the paper. All authors were involved in editing.

Corresponding author

Correspondence to Christoph F. Kurat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Blaine Bartholomew, Olivier Hyrien and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Purified chromatin factors used in the in vitro screen.

SDS-PAGE analyses as in Fig. 1e but for purified histone chaperones a) and chromatin remodelers b). For gel source data, see Supplementary Fig. 2.

Extended Data Fig. 2 Effects of chromatin factors on nucleosome positioning at origins in SGD chromatin.

Composite plots of MNase-seq data as in Fig. 1f, but for SGD chromatin incubated without or with the indicated histone chaperones a) and chromatin remodelers b). Averages of n = 2 independent replicates are plotted for a) as well as for SWI/SNF or SWR1, whereas averages of n = 3 replicates are plotted for the other remodelers.

Extended Data Fig. 3 Effects of chromatin factors in combination with ORC on nucleosome positioning at origins in SGD chromatin.

As Extended Data Fig. 2, but for SGD chromatin incubated without or with the indicated histone chaperones a) and chromatin remodelers b) and wild type ORC. Averages of n = 2 independent replicates are plotted for a) as well as for the SWI/SNF and SWR1 experiments, whereas for the Fun30 and RSC experiments, n = 3 replicates were plotted. SGD chromatin was the same as in Extended Data Fig. 2.

Extended Data Fig. 4 Effects of histone modifications and chromatin density on the ORC/remodeler mechanism.

a) As Fig. 1h, but for SGD chromatin assembled with recombinant yeast histone octamers (n = 1). b) As Fig. 1h, but with SGD chromatin assembled with our standard (high and a medium) assembly degree. Shown is the average of n = 2 biological replicates. The linker 1 length was determined by measuring the distance between the first and second nucleosomal peak, either upstream or downstream of the alignment point, and subtracting 147 bp as previously described20. The average and variation of both upstream and downstream linker 1 lengths as well as +1 and −1 distances to ACS were calculated. The linker 1 length for the Chd1 experiment with medium assembly degree SGD chromatin was measured only upstream the ACS, since peak calling downstream of the ACS was not reliable due to array irregularities for unknown reasons.

Extended Data Fig. 5 Effects of remodeler elimination on origin chromatin organization and replication in vivo.

a) Spot dilution assays (10-fold serial dilutions) with the indicated wild type or quadruple knock out (QKO, Δarp8 Δisw1 Δisw2 Δchd1) yeast strains. YPD: yeast extract, peptone, dextrose full medium. b) Composite plots of in vivo MNase-seq data as in Fig. 1a but for wild type (grey background) versus indicated single remodeler deletion mutants (n = 1). Experiments were performed once, but the results confirmed by a different method of rapid remodeler depletion in c). c) As b) but with published data19 for strains before (“+ Remodeler”) versus after (“-Remodeler”) rapid depletion of the indicated remodeler by the degron or the anchor away system. The plotted samples correspond to: GSM3177776 (+INO80), GSM3177777 (-INO80), GSM3177780 (+ISW1a), GSM3177781 (-ISW1a), GSM3177772 (+ISW2), GSM3177773 (-ISW2), GSM3177784 (+Chd1) and GSM3177785 (-Chd1). d) As in c), but for the indicated double combinations of remodeler depletion. The plotted samples correspond to: GSM3452526 (+INO80, ISW2), GSM3452527 (-INO80, ISW2), GSM3452530 (+ISW1a, Chd1) and GSM3452531 (-ISW1a, Chd1). e) As in c), but for the indicated quadruple remodeler depletion. The plotted samples correspond to: GSM3452546 (+INO80, ISW1a, ISW2, Chd1) and GSM3452547 (-INO80, ISW1a, ISW2, Chd1). f) Flow cytometry analyses as in Fig. 2f but for the indicated remodeler deletion mutants.

Extended Data Fig. 6 Orc1 is involved in nucleosome organization at origins and in replication in vivo.

a) Averaged composite plots of biological replicates including the standard error (s.e.m.) between samples of in vivo MNase-seq data as in Fig. 2e but for ORC1 wild type (n = 4) versus orc1 mutant cells, as indicated (orc1-BAH, n = 3; orc1-IDR, n = 2). b) Heat maps as in Fig. 2a but for in vivo chromatin of the same strains as in a). c) Flow cytometry analyses as in Fig. 2f but with the same strains as in a).

Extended Data Fig. 7 Effects of Orc1 mutations on nucleosome positioning at origins with different remodelers.

a) Composite plots of in vitro MNase-seq data as in Fig. 1h but for SGD chromatin incubated with the indicated chromatin remodelers and wild-type ORC (grey background) or the indicated Orc1-mutant ORCs. Averages of n = 2 independent replicates are plotted. b) As in a) but for the indicated Orc1-mutatant ORCs. Averages of n = 2 independent replicates are plotted.

Extended Data Fig. 8 Effects of Orc1 mutations on the interaction with chromatin remodelers and nucleosomes.

a) Outline of the in vitro co-immunoprecipitation assay. b) In vitro co-immunoprecipitations assay as in a) on SGD chromatin with indicated Orc1 wild-type and mutant ORCs and remodelers. Experiments were performed once, with the exception of the INO80 experiment, which was repeated twice, but the result confirmed with ISW1a, ISW2 and, to much lesser extent with Chd1. For gel source data, see Supplementary Fig. 3.

Extended Data Fig. 9 Effects of Orc1 mutations and chromatin remodelers on in vitro replication.

a) Outline of the genome-scale in vitro replication assay as in Fig. 4c, but for naked DNA plasmid origin library templates. b) In vitro replication assay as in Fig. 4d but according to a) with naked DNA instead of SGD chromatin. c) Outline of the in vitro chromatin replication assay as in a) but for chromatinised single locus ARS1 origin templates14. d) In vitro replication assay as in b) but according to c) for SGD chromatin with single locus ARS1 origin templates instead of the origin plasmid library. e) Outline of the genome-scale in vitro chromatin replication assay as in Fig. 4c, but with different remodelers. f) In vitro replication assay as in Fig. 4d but according to d) with the indicated remodelers. Replication reactions on naked DNA were repeated twice and a representative example is shown. Reactions on the ARS1 origin template and reactions with the different remodelers were repeated once but confirmed the results of other assays or replication assays on SGD chromatin templates (Fig. 4d). For gel source data, see Supplementary Fig. 2.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–3 and Supplementary Tables 1 and 2. Supplementary Figures 1–3: Source gel data from main figures and from Extended Data Figs. 1, 8 and 9. Supplementary Table 1: List of yeast strains that were used in this study. Supplementary Table 2: DNA sequences that were used to generate the Orc1 mutants for in vivo and in vitro studies.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacin, E., Reusswig, KU., Furtmeier, J. et al. Establishment and function of chromatin organization at replication origins. Nature 616, 836–842 (2023). https://doi.org/10.1038/s41586-023-05926-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05926-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing