Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-allelic variants of histones 2a, 2b and 3 in mammals

Abstract

THE genome of eukaryotes is organised in nucleoprotein fibres formed by the interaction of the DNA with small basic proteins, the histones, and by specific interactions between certain histones1. To gain more insight into the molecular organisation of chromosomes it is necessary to determine in detail the complexity and variability of the histones. The chromosomes of eukaryotes contain five major types of histones. One of these, the very lysine-rich H1, consists of a small number of poly-peptides which differ slightly in primary structure and which are present in different relative amounts in different tissues2. The other four histones, which are involved in histone–histone interactions, were considered homogeneous and invariable until it became possible to resolve H2a, H2b and H3 into variants which exhibit tissue-specific variation by polyacrylamide gel electrophoresis in presence of non-ionic detergents3 (Fig. 1). We report here on the primary structure of the variants of mammalian histones 2a, 2b and 3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Elgin, S. C. R. & Weintraub, H. A. Rev. Biochem. 44, 725–774 (1975).

    Article  CAS  Google Scholar 

  2. Kinkade, J. M., Jr & Cole, R. D. J. biol. Chem. 241, 5790–5797 and 5798–5805 (1966); 244, 3375–3386 (1969).

    PubMed  CAS  Google Scholar 

  3. Zweidler, A. in Methods in Chromosomal Protein Research (eds Stein, G. & Stein, S.) (Academic, New York, in the press).

  4. Johns, E. W. Biochem. J. 92, 55–59 (1964); ibid. 105, 611–614 (1967).

    Article  CAS  Google Scholar 

  5. Franklin, S. G. & Zweidler, A. J. Cell Biol. 67, 122a (1975).

    Google Scholar 

  6. Felix, A. M. & Jimenez, M. H. J. Chromatog. 89, 361–364 (1974).

    Article  CAS  Google Scholar 

  7. Mendez, E. & Lai, C. Y. Analyt. Biochem. 65, 281–292 (1975).

    Article  CAS  Google Scholar 

  8. Yeoman, C. E. et al. J. biol. Chem. 247, 6018–6023 (1972).

    PubMed  CAS  Google Scholar 

  9. Iwai, K., Hayashi, H. & Ishikawa, K. J. Biochem., 72, 357–367 (1972).

    Article  CAS  Google Scholar 

  10. DeLange, R. J., Hooper, J. R. & Smith, E. L. J. biol. Chem. 248, 3261–3274 (1973).

    PubMed  CAS  Google Scholar 

  11. Laine, B., Sautiere, P. & Biserte, G. Biochemistry 15, 1640–1645 (1976).

    Article  CAS  Google Scholar 

  12. Ishikawa, K., Hayashi, H. & Iwai, K. J. Biochem. 72, 299–326 (1972).

    Article  CAS  Google Scholar 

  13. Patthy, L. & Smith, E. L. J. biol. Chem. 250, 1919–1920 (1975).

    PubMed  CAS  Google Scholar 

  14. Brandt, W. F., Strickland, W. N. & Von Holt, C. FEBS Lett. 40, 349–352 (1974).

    Article  CAS  Google Scholar 

  15. Hooper, J. A., Smith, E. L., Sommer, K. R. & Chalkley, R. J. biol. Chem. 248, 3275–3279 (1973).

    PubMed  CAS  Google Scholar 

  16. Brandt, W. F. thesis, Univ. Cape Town (1972).

  17. Patthy, L., Smith, E. L. & Johnson, L. J. biol. Chem. 248, 6834–6840 (1973).

    PubMed  CAS  Google Scholar 

  18. Dayhoff, M. D. Atlas of Protein Sequence and Structure, 4 (National Biomedical Research Foundation, Maryland, 1969).

  19. Scheraga, H. A. in Current Topics in Biochemistry (eds Anfinsen, C. B. & Schechter, A. N.) 1–42 (Academic, New York, 1974).

    Google Scholar 

  20. Lewis, P. N. & Bradbury, E. M. Biochem. biophys. Acta 336, 153–164 (1974).

    CAS  Google Scholar 

  21. Hamand, K. & Iwai, K. J. Biochem. 79, 125–129 (1976).

    Article  Google Scholar 

  22. Zweidler, A. Arch. Genetik (in the press).

  23. Zweidler, A. in Organisation and Expression of Chromosomes (eds Allfrey, V. G., Bautz, E. K. F., McCarthy, B. J., Schimke, R. T. & Tissieres, A.) 187–196 (Berlin: Dahlem Konferenzen, 1976).

    Google Scholar 

  24. Borun, T. W., Gabrielli, F., Ajiro, K., Zweidler, A. & Baglioni, C. Cell 4, 59–67 (1975).

    Article  CAS  Google Scholar 

  25. Borun, T. W., Ajiro, K., Zweidler, A., Dolby, T. W. & Stephens, R. E. J. biol. Chem. 252, 173–180 (1976).

    Google Scholar 

  26. Cohen, L. H., Newrock, K. M. & Zweidler, A. Science 190, 994–997 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Goodwin, G. H., Sanders, C. & Johns, E. W. Eur. J. Biochem. 38, 14–19 (1973).

    Article  CAS  Google Scholar 

  28. Bradbury, E. M., Hjelm, R. P. & Baldwin, J. P., in Organization and Expression of Chromosomes (eds Allfrey, V. G., Bautz, E. K. F., McCarthy, B. J., Schimke, R. T. & Tissieres, A.) 223–238 (Dahlem Konferenzen, Berlin, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FRANKLIN, S., ZWEIDLER, A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266, 273–275 (1977). https://doi.org/10.1038/266273a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266273a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing