Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Does 5S RNA function by a switch between two secondary structures?

Abstract

THE structure of 5S RNA has been a lively field for experiment and speculation, with no definitive resolution of the problem in sight (see refs 1 and 2 for reviews). Fox and Woese3 suggested comparative sequence analysis of prokaryotic 5S RNAs as a method for locating base paired regions, an appealing procedure because of its similarity to the method used to substantiate the cloverleaf model for tRNA. Its logic states that if all known 5S RNA sequences contain complementary bases at a site, a double helix probably exists there in the functional form. We propose that comparative sequence analysis suggests two different functional structures for prokaryotic 5S RNA. One of them has been introduced by Fox and Woese3, and its set condary structure is based on four conserved helices: the ‘molecular stalk’ (Escherichia coli residues 1–10 and 119–110), the weak ‘tuned helix’ (18–23/65–60), the ‘common arm base’ (31–34/51–48) and the ‘prokaryotic loop’ (82-86/94-90). The base paired structure that results is consistent with enzymatic digestion14 and chemical modification1,5 results on native 5S RNA, if allowance is made for protection of residues by tertiary bonding as well as secondary structure. This ‘model’, however, does not explain the apparent conservation of a double helix (33–39/88–82 in E. coli) (Table 1) which is sterically inconsistent with two of the helices listed (the common arm base and the prokaryotic loop). Fox and Woese3 noted this conservation but considered it unimportant because of the variable helix length and the conflict with the other two helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monier, R. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 141–168 (Cold Spring Harbor, New York, 1974).

    Google Scholar 

  2. Erdmann, V. A. Progr. Nucl. Acid Res. 18, 45–90 (1976).

    Article  CAS  Google Scholar 

  3. Fox, G. E. & Woese, C. R. Nature 256, 505–507 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Jordan, B. R. J. molec. Biol. 55, 423–439 (1971).

    Article  CAS  Google Scholar 

  5. Aubert, M., Bellemare, G. & Monier, R. Biochimie 55, 135–142 (1973).

    Article  CAS  Google Scholar 

  6. Brownlee, G. G., Sanger, F. & Barrell, B. G. Nature 215, 735–736 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Dubuy, B. & Weissman, S. M. J. biol. Chem. 246, 747–761 (1971).

    CAS  Google Scholar 

  8. Pribula, C. D., Fox, G. E. & Woese, C. R. FEBS Lett. 64, 350–352 (1976).

    Article  CAS  Google Scholar 

  9. Pribula, C. D., Fox, G. E., Woese, C. R., Sogin, M. & Pace, N. FEBS Lett. 44, 322–323 (1974).

    Article  CAS  Google Scholar 

  10. Marotta, C. A., Varicchio, F., Smith, I. & Weissman, S. M. J. biol. Chem. 251, 3122–3127 (1976).

    CAS  PubMed  Google Scholar 

  11. Raué, H. A., Stoof, T. J. & Planta, R. J. Eur. J. Biochem. 59, 35–42 (1975).

    Article  Google Scholar 

  12. Corry, M. J., Payne, P. I. & Dyer, T. A. FEBS Lett. 46, 63–66 (1974).

    Article  CAS  Google Scholar 

  13. Aubert, M., Scott, J. F., Reynier, M. & Monier, R. Proc. natn. Acad. Sci. U.S.A. 61, 292–299 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Lecanidou, R. & Richards, E. G. Eur. J. Biochem. 57, 127–133 (1975).

    Article  CAS  Google Scholar 

  15. Hilbers, C. W. & Shulman, R. G. Proc. natn. Acad. Sci. U.S.A. 71, 3239–3242 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Wong, L. L. & Kearns, D. R. Biopolymers 13, 371–380 (1974).

    Article  CAS  Google Scholar 

  17. Daniel, W. E. & Colby, M. Proc. natn. Acad. Sci. U.S.A. 72, 2582–2586 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Kearns, D. R. & Wong, Y. P. J. molec. Biol. 87, 755–774 (1974).

    Article  CAS  Google Scholar 

  19. Maassen, J. A. & Möller, W. Biochem. biophys. Res. Commun. 64, 1175–1183 (1975).

    Article  CAS  Google Scholar 

  20. Belitsina, N. V., Glukhova, M. A. & Spirin, A. S. J. molec. Biol. 108, 609–613 (1976).

    Article  CAS  Google Scholar 

  21. Herr, W. & Noller, F. FEBS Lett. 53, 248–252 (1975).

    Article  CAS  Google Scholar 

  22. Erdmann, V. A., Sprinzl, M. & Pongs, O. Biochem. biophys. Res. Commun. 54, 942–948 (1973).

    Article  CAS  Google Scholar 

  23. Schwarz, U., Menzel, H. M. & Gassen, H. G. Biochemistry 15, 2484–2490 (1976).

    Article  CAS  Google Scholar 

  24. Riddle, D. L. & Carbon, J. Nature new Biol. 242, 230–234 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WEIDNER, H., YUAN, R. & CROTHERS, D. Does 5S RNA function by a switch between two secondary structures?. Nature 266, 193–194 (1977). https://doi.org/10.1038/266193a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266193a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing