Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for long-term diffuse deformation of the lithosphere of the equatorial Indian Ocean

Abstract

The presence of large earthquakes, east–west-striking folds and thrust faults in sediments, and east–west-striking undulations of wavelength 200 km in topography and gravity shows that the equatorial Indian Ocean is the locus of unusual deformation1,2,3,4,5,6,7,8. This deformation has been interpreted as a diffuse boundary between two tectonic plates9,10,11,12,13. Seismic stratigraphy and deep-sea drilling at two locations in the Bengal fan indicate that the deformation began 7.5–8.0 Myr ago3,14,15. Here, however, we show, using plate reconructions, that motion across this diffuse oceanic plate boundary began more than 10 Myr earlier than previously inferred and that the amount of north–south convergence across the boundary through the central Indian basin has been significantly greater than the convergence estimated from seismic profiles. The relative plate velocity accommodated across the central Indian basin has varied with time and has been as fast as 6 mm yr−1 — about half the separation rate of Earth's slowest-spreading mid-ocean ridge. The earliest interval of measurable motion, which began more than 18 Myr ago, may coincide with rapid denudation of the Tibetan plateau from 21 Myr to 15–17 Myr ( ref. 16). The present motion across the central Indian basin began no earlier than 11 Myr — following an earlier interval of slower motion from 18 to 11 Myr — and may have begun at 8 Myr, when the Tibetan plateau is thought to have attained its maximum elevation16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map.
Figure 2: Map of equatorial Indian Ocean showing poles of finite rotation (and 95% confidence regions) between the Indian and Capricorn plates.
Figure 3: Reconstructions of magnetic anomalies 6 and 5 along the Carlsberg ridge.
Figure 4: Estimated north–south convergence or divergence between the Indian and Capricorn plates.

Similar content being viewed by others

References

  1. Stein, S. & Okal, E. A. Seismicity and tectonics of the Ninetyeast Ridge area: Evidence for internal deformation of the Indian plate. J. Geophys. Res. 83, 2233– 2245 (1978).

    Article  ADS  Google Scholar 

  2. Weissel, J. K., Anderson, R. N. & Geller, C. A. Deformation of the Indo-Australian plate. Nature 287, 284–291 ( 1980).

    Article  ADS  Google Scholar 

  3. Curray, J. R. & Munasinghe, T. Timing of intraplate deformation, northeastern Indian Ocean. Earth Planet. Sci. Lett. 94, 71–77 (1989).

    Article  ADS  Google Scholar 

  4. Bull, J. M. & Scrutton, R. A. Seismic reflection images of intraplate deformation, Central Indian Ocean, and their tectonic significance. J. Geol. Soc. Lond. 149, 955– 966 (1992).

    Article  Google Scholar 

  5. Chamot-Rooke, N., Jestin, F., de Voogd, B. & Phèdre Working Group Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile. Geology 21, 1043–1046 (1993).

    Article  ADS  Google Scholar 

  6. Jestin, F. Cinématique rigide et Déformations dans la Jonction Triple Afar et dans le Basin Indien Central.Thesis, Univ. Pierre et Marie Curie (Pari s 6)((1994)).

    Google Scholar 

  7. Van Orman, J., Cochran, J. R., Weissel, J. K. & Jestin, F. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean. Earth Planet. Sci. Lett. 133, 35–46 (1995).

    Article  ADS  CAS  Google Scholar 

  8. McAdoo, D. C. & Sandwell, D. T. Folding of oceanic lithosphere. J. Geophys. Res. 90, 8563– 8569 (1985).

    Article  ADS  Google Scholar 

  9. Wiens, D. A.et al. Adiffuse plate boundary model for Indian Ocean tectonics. Geophys. Res. Lett. 12, 429–432 (1985).

    Article  ADS  Google Scholar 

  10. Gordon, R. G., DeMets, C. & Argus, D. F. Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present motion between the Australian and Indian plates. Tectonics 9, 409– 422 (1990).

    Article  ADS  Google Scholar 

  11. Royer, J.-Y. & Chang, T. Evidence for relative motions between the Indian and Australian plates during the last 20 Myr from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian plate. J. Geophys. Res. 96, 11779– 11802 (1991).

    Article  ADS  Google Scholar 

  12. DeMets, C., Gordon, R. G. & Vogt, P. Location of the Africa-Australia-India triple junction and motion between the Australian and Indian plates: Results from an aeromagnetic investigation of the central Indian and Carlsberg ridges. Geophys. J. Int. 119, 893–930 ( 1994).

    Article  ADS  Google Scholar 

  13. Royer, J.-Y. & Gordon, R. G. The motion and boundary between the Capricorn and Australian plates. Science 277, 1268–1274 (1997).

    Article  CAS  Google Scholar 

  14. Moore, D. G., Curray, J. R., Raitt, R. W. & Emmel, F. J. Stratigraphic-seismic section correlations and implications to Bengal Fan history. Initial Rep. DSDP 22, 403– 412 (1974).

    Google Scholar 

  15. Cochran, J., Stow, D. & Leg 116 shipboard scientific party Collisions in the Indian Ocean. Nature 330, 519–521 (1987).

    Article  Google Scholar 

  16. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663– 1670 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357 –396 (1993).

    Article  ADS  Google Scholar 

  18. Kroon, D., Steens, T. & Troelstra, S. R. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. ODP Sci. Res. 117, 257–263 ( 1991).

    Google Scholar 

  19. Prell, W. L., Murray, D. W., Clemens, S. C. & Anderson, D. M. in Synthesis of Results from Scientific Drilling in the Indian Ocean (ed. Duncan, R. A. et al.) 447–469 (Geophys. Monogr. Vol. 70, Am. Geophys. Union, Washington DC, (1992 )).

    Google Scholar 

  20. Quade, J. T., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    Article  ADS  Google Scholar 

  21. Royer, J.-Y., Gordon, R. G., DeMets, C. & Vogt, P. R. New limits on the motion between India and Australia since chron 5 (11 Ma) and implications for lithospheric deformation in the equatorial Indian Ocean. Geophys. J. Int. 129, 41– 74 (1997).

    Article  ADS  Google Scholar 

  22. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 ( 1995).

    Article  ADS  Google Scholar 

  23. Sandwell, D. T. & Smith, W. H. F. Marine gravity from Geosat and ERS-1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997).

    Article  ADS  Google Scholar 

  24. Copeland, P., Harrison, T. M., Kidd, W. S. F., Xu, R. & Zhang, Y. Rapid early Miocene acceleration of uplift in the Gangdese belt, Xixang (southern Tibet) and its bearing on accommodation mechanisms of the India-Asia collision. Earth Planet. Sci. Lett. 86, 240–252 ( 1987).

    Article  ADS  CAS  Google Scholar 

  25. Richter, F. M., Lovera, O. M., Harrison, T. M. & Copeland, P. Tibetan tectonics from 40Ar/39Ar analysis of a single K-feldspar sample. Earth Planet. Sci. Lett. 105, 266–278 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Richter, F. M., Rowley, D. B. & DePaolo, D. J. Sr isotope evolution o f seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11– 23 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Honegger, K.et al. Magmatism and metamorphism in the Laddakh Himalayas (the Indus-Tsangpo suture zone). Earth Planet. Sci. Lett. 60, 253–292 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Copeland, P. & Harrison, T. M. Episodic rapid uplift of the Himalayas revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan. Geology 18, 354–357 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Stow, D. A. V.et al . Sediment facies and processes of the distal Bengal Fan, leg 116. Proc. ODP Sci. Res. 116, 377– 396 (1990).

    Google Scholar 

  30. Liu, C. S., Curray, J. R. & McDonald, J. M. New constraints on the tectonic evolution of the eastern Indian Ocean. Earth Planet. Sci. Lett. 65, 331–342 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Vogt and his colleagues at the US Naval Research Laboratory for their help in collecting many of the critical data used in this study. We also thank T. Henstock, S. Cande and D.Rowley for comments on the manuscript. This work was supported by the US NSF and by CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, R., DeMets, C. & Royer, JY. Evidence for long-term diffuse deformation of the lithosphere of the equatorial Indian Ocean. Nature 395, 370–374 (1998). https://doi.org/10.1038/26463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26463

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing