Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mantle discontinuities and temperature under the North American continental keel

Abstract

A ubiquitous feature of upper-mantle seismic velocity models has been the presence of high-velocity ‘keels’ beneath stable continental interiors1,2,3,4,5. Uncertainty remains, however, regarding the maximum depth to which continental keels extend, the degree to which they have cooled the mantle that surrounds them and their role in mantle flow. Here we investigate thermal anomalies across the eastern margin of the North American continental keel by imaging the seismic discontinuities at depths of 410 and 660 km with compressional-to-shear converted waves recorded by a 1,500-km-long seismometer deployment in the eastern United States. The thickness of the transition zone (the region nominally between depths of 410 and 660 km) and the depth to the ‘410-km’ discontinuity indicate that cold keel material and sub-keel downwellings must be largely confined to the upper mantle and may impinge on the transition zone only in localized regions and with thermal anomalies of less than 150 K. A 20-km depression of the ‘660-km’ discontinuity to the south of the westernmost stations coincides with a region of fast velocity in the deep transition zone2 and may be associated with the remnants of the subducted Farallon plate1,2,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ps conversion points at depths of 410 km (small black symbols) and 660 km (small white symbols) plotted on S-wave velocity anomalies from Grand2 for depths of 175–250 km.
Figure 2: Ps receiver function stacks from bins to the north (a) and to the south (b) of the MOMA array.
Figure 3: Discontinuity topography, transition zone (TZ) thickness, and deep transition-zone velocity anomalies beneath the MOMA array.

Similar content being viewed by others

References

  1. Grand, S. P. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994).

    Article  ADS  Google Scholar 

  2. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  3. van der Lee, S. & Nolet, G. The upper mantle S-velocity structure of North America. J. Geophys. Res. 102, 22815–22838 (1997).

    Article  ADS  Google Scholar 

  4. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Jordan, T. H. Structure and formation of the continental tectosphere. J. Petrol.(Special Lithosphere issue) 11–37 (1988).

  6. Flanagan, M. P. & Shearer, P. M. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998).

    Article  ADS  Google Scholar 

  7. Gu, Y., Dziewonski, A. M. & Agee, C. B. Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett. 157, 57–67 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Forte, A. M., Dziewonski, A. M. & O'Connell, R. J. Continent-ocean chemical heterogeneity in the mantle based on seismic tomography. Science 268, 386–388 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Doin, M.-P., Fleitout, L. & McKenzie, D. Geoid anomalies and the structure of continental and oceanic lithospheres. J. Geophys. Res. 101, 16119–16135 (1996).

    Article  ADS  Google Scholar 

  10. Pari, G. & Peltier, W. R. The free-air gravity constraint on subcontinental mantle dynamics. J. Geophys. Res. 101, 28105–28132 (1996).

    Article  ADS  Google Scholar 

  11. Peltier, W. R., Forte, A. M., Mitrovica, J. X. & Dziewonski, A. M. Earth's gravitational field: Seismic tomography resolves the enigma of the Laurentian anomaly. Geophys. Res. Lett. 19, 1555–1558 (1992).

    Article  ADS  Google Scholar 

  12. Lenardic, A. & Kaula, W. M. Mantle dynamics and the heat flow into the Earth's continents. Nature 378, 709–711 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Bostock, M. G. Ps conversions from the upper mantle transition zone beneath the Canadian landmass. J. Geophys. Res. 101, 8393–8402 (1996).

    Article  ADS  Google Scholar 

  14. Vinnik, L., Chevrot, S. & Montagner, J. P. Shear wave splitting in the mantle Ps phases. Geophys. Res. Lett. 24, 1007–1010 (1997).

    Article  ADS  Google Scholar 

  15. Stammler, K.et al. The upper mantle discontinuities: correlated or anticorrelated? Geophys. Res. Lett. 19, 1563–1566 (1992).

    Article  ADS  Google Scholar 

  16. Dueker, K. G. & Sheehan, A. F. Mantle discontinuity structure beneath the Colorado Rocky Mountains and High Plains. J. Geophys. Res. 103, 7153–7169 (1998).

    Article  ADS  Google Scholar 

  17. Chen, Y. H., Roecker, S. W. & Kosarev, G. L. Elevation of the 410 km discontinuity beneath the central Tien Shan: evidence for a detached lithospheric root. Geophys. Res. Lett. 24, 1531–1534 (1997).

    Article  ADS  Google Scholar 

  18. Revenaugh, J. & Jordan, T. H. Mantle layering from ScS reverberations, 2. The transition zone. J.Geophys. Res. 96, 19763–19780 (1991).

    Article  ADS  Google Scholar 

  19. Gossler, J. & Kind, R. Seismic evidence for very deep roots of continents. Earth Planet. Sci. Lett. 138, 1–13 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Kennett, B. L. N. IASPEI 1991 Seismological Tables (Research School of Earth Sciences, Australian National University, Canberra, (1991)).

    Book  Google Scholar 

  21. Mooney, W. D., Laske, G. & Masters, T. G. Crust 5.1: a global crust model at 5° × 5°. J. Geophys. Res. 103, 727–747 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Musacchio, G., Mooney, W. D., Luetgert, J. H. & Christensen, N. I. Composition of the crust in the Grenville and Appalachian provinces of North America inferred from Vp/Vs ratios. J. Geophys. Res. 102, 15225–15241 (1997).

    Article  ADS  Google Scholar 

  23. Isaak, D. G. High-temperature elasticity of iron-bearing olivines. J. Geophys. Res. 97, 1871–1885 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Agnon, A. & Bukowinski, M. S. T. δs at high pressure and dlnVs/dlnVp in the lower mantle. Geophys. Res. Lett. 17, 1149–1152 (1990).

    Article  ADS  Google Scholar 

  25. Fouch, M. J., Fischer, K. M. & Parmentier, E. M. Mantle flow contributions to shear wave splitting beneath continental roots. Eos 78(17), S322 (1997).

    Google Scholar 

  26. Karato, S.-I. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Chopelas, A. Thermal properties of β-Mg2SiO4at mantle pressures derived from vibrational spectroscopy: implications for the mantle at 400 km depth. J. Geophys. Res. 96, 11817–11829 (1991).

    Article  ADS  Google Scholar 

  29. Akaogi, M. & Ito, E. Refinement of enthalpy measurement of MgSiO3perovskite and negative pressure-temperature slopes for perovskite-forming reactions. Geophys. Res. Lett. 20, 1839–1842 (1993).

    Article  ADS  CAS  Google Scholar 

  30. van der Lee, S. & Nolet, G. Seismic imaging of the subducted trailing fragments of the Farallon plate. Nature 386, 266–269 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. van der Lee and S. Grand for their mantle velocity models, Y. Shen for assistance with the receiver function analysis, G. Helffrich for a review, the IRIS/PASSCAL program for the seismometers used in the MOMA experiment, and M. Fouch, G. Al-Eqabi, P. Shore and the Lamont PASSCAL Instrument Center for their help with the deployment. Data for stations HRV and CCM were obtained from the IRIS Data Management Center. This work was supported by the Geophysics Program of the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Fischer, K., Wysession, M. et al. Mantle discontinuities and temperature under the North American continental keel. Nature 395, 160–163 (1998). https://doi.org/10.1038/25972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25972

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing