Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous production of nitrous acid on soot in polluted air masses

Abstract

Polluted air masses are characterized by high concentrations of oxidized nitrogen compounds which are involved in photochemical smog and ozone formation. The OH radical is a key species in these oxidation processes. The photolysis of nitrous acid (HNO2), in the morning, leads to the direct formation of the OH radical and may therefore contribute significantly to the initiation of the daytime photochemistry in the polluted planetary boundary layer. But the formation of nitrous acid remains poorly understood: experimental studies imply that a suggested heterogeneous formation process involving NO2 is not efficient enough to explain the observed night-time build-up of HNO2 in polluted air masses1. Here we describe kinetic investigations which indicate that the heterogeneous production of HNO2 from NO2 on suspended soot particles proceeds 105 to 107 times faster than on previously studied surfaces. We therefore propose that the interaction between NO2 and soot particles may account for the high concentrations of HNO2 in air masses where combustion sources contribute to air pollution by soot and NOx emissions. We believe that the observed HNO2 formation results from the reduction of NO2 in the presence of water by C–O and C–H groups in the soot. Although prolonged exposure to oxidizing agents in the atmosphere is likely to affect the chemical activity of these groups, our observations nevertheless suggest that fresh soot may have a considerable effect on the chemical reactions occurring in polluted air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Online record of the rate of H13NO2 formation from 12 p.p.b.v. NO2 in the absence and presence of soot particles.
Figure 2: HNO2 concentrations, normalized to total particle surface area, as a function of reaction time.
Figure 3: HNO2 formation on soot particles at 12 p.p.b.v. NO2 and 50% relative humidity at reaction times below 3 s.

Similar content being viewed by others

References

  1. Lammel, G. & Cape, J. N. Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 361–369 (1996).

  2. Kitto, A.-M. N. & Harrison, R. M. Nitrous and nitric acid measurements at sites in south-east England. Atmos. Environ. A 26, 235–241 (1992).

    Article  ADS  Google Scholar 

  3. Andrés-Hernandez, M. D., Notholt, J., Hjorth, J. & Schrems, O. ADOAS study on the origin of nitrous acid at urban and non-urban sites. Atmos. Environ. 30, 175–180 (1996).

    Article  ADS  Google Scholar 

  4. Harrison, R. M., Peak, J. D. & Collins, G. M. Tropospheric cycle of nitrous acid. J. Geophys. Res. 101, 14429–14439 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Kirchstetter, T. W., Harley, R. A. & Littlejohn, D. Measurement of nitrous acid in motor vehicle exhaust. Environ. Sci. Technol. 30, 2843–2849 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Lary, D. J.et al. Carbon aerosols and atmospheric photochemistry. J. Geophys. Res. 102, 3671–3682 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Akhter, M. S., Chughtai, A. R. & Smith, D. M. The structure of hexane soot I: Spectroscopic studies. Appl. Spectrosc. 39, 143–153 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Rogaski, C. A., Golden, D. M. & Williams, L. R. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4. Geophys. Res. Lett. 24, 381–384 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Tabor, K., Gutzwiller, L. & Rossi, M. J. Heterogeneous chemical kinetics of NO2on amorphous carbon at ambient temperature. J. Phys. Chem. 98, 6172–6175 (1994).

    Article  CAS  Google Scholar 

  10. Baltensperger, U.et al. Use of positron-emitting 13N for studies of the selective reduction of NO by NH3over vanadia/titania catalyst at very low reactant concentrations. J. Phys. Chem. 97, 12325–12330 (1993).

    Article  CAS  Google Scholar 

  11. Kalberer, M.et al. Heterogeneous chemical processing of 13NO2by monodisperse carbon aerosols at very low concentrations. J. Phys. Chem. 100, 15487–15493 (1996).

    Article  CAS  Google Scholar 

  12. Allegrini, I.et al. Annular denuder method for sampling reactive gases and aerosols in the atmosphere. Sci. Tot. Environ. 67, 1–16 (1987).

    Article  CAS  Google Scholar 

  13. Liu, B. Y. H. & Pui, D. Y. H. Asubmicron aerosol standard and the primary absolute calibration of the condensation nuclei counter. J. Colloid Interface Sci. 47, 155–171 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Berner, A.et al. Modal character of atmospheric black carbon size distributions. J. Geophys. Res. 101, 19559–19565 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Rogak, S. N., Baltensperger, U. & Flagan, R. C. Measurement of mass transfer to agglomerate aerosols. Aerosol Sci. Technol. 14, 447–458 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Wild, U., Pfänder, N. & Schlögl, R. Species analysis of automative carbon particles: application of XPS for integral analysis of filter samles. Fresenius J. Anal. Chem. 357, 420–428 (1997).

    Article  CAS  Google Scholar 

  17. Cachier, H., Bremond, M.-P. & Buat-Ménard, P. Determination of atmospheric soot carbon with a simple thermal method. Tellus B 41, 379–390 (1989).

    Article  ADS  Google Scholar 

  18. Burtscher, H., Künzel, S., Hüglin, Ch. Characterization of particles in combustion engine exhaust. J.Aerosol Sci. 29, 389–396 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Chughtai, A. R., Welch, J. W. F., Akhter, M. S. & Smith, D. M. Spectroscopic study of gaseous products of soot—oxides of nitrogen/water reactions. Appl. Spectrosc. 44, 294–298 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Febo, A. & Perrino, C. Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmos. Environ. A 25, 1055–1061 (1991).

    Article  ADS  Google Scholar 

  21. Staffelbach, T., Neftel, A. & Horowitz, L. W. Photochemical oxidant formation over southern Switzerland 2. Model results. J. Geophys. Res. 102, 23363–23373 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Haugloustaine, D. A., Ridley, B. A., Solomon, S., Hess, P. G. & Madronich, S. HNO3/NOxratio in the remote troposphere during MLOPEX2: Evidence for nitric acid reduction on carbonaceous aerosols? Geophys. Res. Lett. 23, 2609–2612 (1996).

    Article  ADS  Google Scholar 

  23. Liousse, C.et al. Aglobal three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, 19411–19432 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Blake, D. F. & Kato, K. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere. J. Geophys. Res. 100, 7195–7202 (1995).

    Article  ADS  CAS  Google Scholar 

  25. De Santis, F. & Allegrini, I. Heterogeneous reactions of SO2and NO2on carbonaceous surfaces. Atmos. Environ. 26, 3061–3064 (1992).

    Article  ADS  Google Scholar 

  26. Smith, D. M. & Chughtai, A. R. Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations. J. Atmos. Chem. 26, 77–91 (1997).

    Article  CAS  Google Scholar 

  27. Weschler, C. J., Mandich, M. L. & Graedel, T. E. Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets. J. Geophys. Res. 91, 5189–5204 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M. & Zacchei, P. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. 101, 19567–19580 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The stable proton beam from the Philips Cyclotron necessary for 13N production was provided by the staff of the Accelerator Facilities at Paul Scherrer Institute; V. Lavanchy, B. Schnyder and R. Koetz performed the offline analysis of soot samples. Contributions from S. Nyeki, C. Zellweger, E.Weingartner, P. Zimmermann and B. Eichler were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ammann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammann, M., Kalberer, M., Jost, D. et al. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 395, 157–160 (1998). https://doi.org/10.1038/25965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25965

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing