Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous pinwheel annihilation during visual development

Abstract

Neurons in the visual cortex respond preferentially to edge-like stimuli of a particular orientation1. It is a long-standing hypothesis that orientation selectivity arises during development through the activity-dependent refinement of cortical circuitry2,3,4. Unambiguous evidence for such a process has, however, remained elusive5,6,7. Here we argue that, if orientation preferences arise through activity-dependent refinement of initially unselective patterns of synaptic connections, this process should leave distinct signatures in the emerging spatial pattern of preferred orientations. Preferred orientations typically change smoothly and progressively across the cortex1. This smooth progression is disrupted at the centres of so-called pinwheels8,9, where neurons exhibiting the whole range of orientation preferences are located in close vicinity10. Assuming that orientation selectivity develops through a set of rules that we do not specify, we demonstrate mathematically that the spatial density of pinwheels is rigidly constrained by basic symmetry principles. In particular, the spatial density of pinwheels, which emerge when orientation selectivity is first established, is larger than a model-independent minimal value. As a consequence, lower densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pinwheels frequently occur in random patterns of IODs.
Figure 2: Activity-dependent mechanisms constrain the scaled density of pinwheels during development.
Figure 3: Rearrangement of IODs in the presence or absence of ocular dominance columns.
Figure 4: Annihilation of a pair of pinwheels in a simulation of the elastic network (see Methods).

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in cat's visual cortex. J. Physiol. 160, 215–243 (1962).

    Article  Google Scholar 

  2. von der Malsburg, C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973).

    Article  CAS  Google Scholar 

  3. Miller, K. D. Amodel for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  4. Swindale, N. V. The development of topography in the visual cortex: a review of models. Network 7, 161–247 (1996).

    Article  CAS  Google Scholar 

  5. Movshon, J. A. & Van Sluyters, R. C. Visual neural development. Annu. Rev. Psychol. 32, 447–522 (1981).

    Article  Google Scholar 

  6. Gödecke, I. & Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996).

    Article  ADS  Google Scholar 

  7. Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Swindale, N. V., Matsubara, J. A. & Cynader, M. S. Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci. 7, 1414–1427 (1987).

    Article  CAS  Google Scholar 

  9. Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Maldonado, P. E., Gödecke, I., Gray, C. M. & Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997).

    Article  CAS  Google Scholar 

  11. Albus, K. & Wolf, W. Early post-natal development of neuronal function in the kitten's visual cortex: A laminar analysis. J. Physiol. 348, 153–185 (1984).

    Article  CAS  Google Scholar 

  12. Chapman, B. & Stryker, M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  13. Chapman, B., Stryker, M. P. & Bonhoeffer, T. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16, 6443–6453 (1996).

    Article  CAS  Google Scholar 

  14. Frisch, U. Turbulence (Cambridge University Press, Cambridge, (1995)).

    Book  Google Scholar 

  15. Sompolinsky, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 (1997).

    Article  CAS  Google Scholar 

  16. Bock, G. & Cardew, G. (eds) Development of the Cerebral Cortex (Wiley, Chichester, (1995)).

    Google Scholar 

  17. Miller, K. D. Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron 17, 367–370 (1996).

    Article  Google Scholar 

  18. LeVay, S. & Nelson, S. B. in Vision and Visual Dysfunction 266–315 (Macmillan, Houndsmill, (1991)).

    Google Scholar 

  19. Halperin, B. T. in Physics of Defects, Les Houches, Session XXXV, 1980 (eds Balian, R., Kléman, M. & Poirir, J.-P.) 813–857 (North-Holland, Amsterdam, (1981)).

    Google Scholar 

  20. Durbin, R. & Mitchinson, G. Adimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Erwin, E., Obermayer, K. & Schulten, K. Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Comp. 7, 425–468 (1995).

    Article  CAS  Google Scholar 

  22. Obermayer, K. & Blasdel, G. G. Singularities in primate orientation maps. Neural Comp. 9, 555–575 (1997).

    Article  CAS  Google Scholar 

  23. Rao, S. C., Toth, L. J. & Sur, M. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. J. Comp. Neurol. 387, 358–370 (1997).

    Article  CAS  Google Scholar 

  24. Lowel, S., Freeman, B. & Singer, W. Topographic organization of the orientation column system in large flat-mounts of the cat visual cortex: A 2-deoxyglucose study. J. Comp. Neurol. 255, 401–415 (1987).

    Article  CAS  Google Scholar 

  25. Bonhoeffer, T., Kim, D.-S., Malonek, D., Shoham, D. & Grinvald, A. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur. J. Neurosci. 7, 1973–1988 (1995).

    Article  CAS  Google Scholar 

  26. Bosking, W. H., Zhang, Y., Schofield, B. R. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  Google Scholar 

  27. Horton, J. C. & Hocking, D. R. Anatomical demonstration of ocular dominance columns in striate cortex of the squirrel monkey. J. Neurosci. 16, 5510–5522 (1996).

    Article  CAS  Google Scholar 

  28. Rényi, A. Probability Theory (North-Holland, Amsterdam, (1970)).

    MATH  Google Scholar 

  29. German, S. Some averaging and stability results for random differential equations. SIAM J. Appl. Math. 36, 86–105 (1997).

    Article  MathSciNet  Google Scholar 

  30. Niebur, E. & Wörgötter, F. Design principles of columnar organization in visual cortex. Neural Comp. 6, 602–614 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Löwel, H.-U. Bauer, K. Pawelzik, K. Miller, A. V. M. Herz, H. Dinse, P.Heil and G. Langner for discussion, and S. Löwel, F. Hoffsümmer, J. Sandhaas and T. Dresbach for helpful comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft and the Max-Planck-Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wolf.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, F., Geisel, T. Spontaneous pinwheel annihilation during visual development. Nature 395, 73–78 (1998). https://doi.org/10.1038/25736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25736

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing