Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion

Abstract

The basic reaction mechanisms for membrane fusion in the trafficking of intracellular membranes and in exocytosis are probably identical5. But in contrast to regulated exocytosis, intracellular fusion reactions are referred to as ‘constitutive’ as no final Ca2+-dependent triggering step has been observed. Although transport from the endoplasmic reticulum to the Golgi apparatus in the cell depends on Ca2+ (ref. 6), as does endosome fusion7 and assembly of the nuclear envelope8, it is unclear whether Ca2+ triggers these events. Membrane fusion involves several subreactions: priming, tethering and docking. Proteins that are needed for fusion include p115, SNAPs, NSF, SNAREs and small GTPases, which operate in these early reactions1,2,3 but the machinery that catalyses the final mixing of biological membranes is still unknown. Here we show that Ca2+ is released from the vacuolar lumen following completion of the docking step. We have identified calmodulin as the putative Ca2+ sensor and as the first component required in the post-docking phase of vacuole fusion. Calmodulin binds tightly to vacuoles upon Ca2+ release. Unlike synaptotagmin or syncollin in exocytosis4, calmodulin does not act as a fusion clamp but actively promotes bilayer mixing. Hence, activation of SNAREs is not sufficient to drive bilayer mixing between physiological membranes. We propose that Ca2+ control of the latest phase of membrane fusion may be a conserved feature, relevant not only for exocytosis, but also for intracellular, ‘constitutive’ fusion reactions. However, the origin of the Ca2+ signal, its receptor and its mode of processing differ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of calmodulin antagonists on vacuole fusion.
Figure 5: Luminal Ca2+ is required for vacuole fusion.
Figure 2: Calmodulin is required for a late stage of vacuole fusion in vitro and invivo.
Figure 3: Calmodulin binds to vacuoles.
Figure 4: Calmodulin with a reduced affinity for Ca2+ inhibits fusion.
Figure 6: The efflux of Ca2+ from the lumen is needed in a late phase of fusion.

Similar content being viewed by others

References

  1. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  Google Scholar 

  2. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF) driven release of Sec17p (a-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  3. Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Edwardson, J. M., An, S. & Jahn, R. The secretory granule protein syncollin binds to syntaxin in a Ca2+-sensitive manner. Cell 90, 325–333 (1997).

    Article  CAS  Google Scholar 

  5. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Pryer, N. K., Wuestehube, L. J. & Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61, 471–516 (1992).

    Article  CAS  Google Scholar 

  7. Colombo, M. I., Beron, W. & Stahl, P. D. Calmodulin regulates endosome fusion. J. Biol. Chem. 272, 7707–7712 (1997).

    Article  CAS  Google Scholar 

  8. Sullivan, K. M., Busa, W. B. & Wilson, K. L. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3receptor function. Cell 73, 1411–1422 (1993).

    Article  CAS  Google Scholar 

  9. Conradt, B., Shaw, J., Vida, T., Emr, S. & Wickner, W. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J. Cell Biol. 119, 1469–1479 (1992).

    Article  CAS  Google Scholar 

  10. Haas, A., Conradt, B. & Wickner, W. G-protein ligands inhibit in vitro reactions of vacuole inheritance. J. Cell Biol. 126, 87–97 (1994).

    Article  CAS  Google Scholar 

  11. Ungermann, C., Nichols, B. J., Pelham, H. R. B. & Wickner, W. Avacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    Article  CAS  Google Scholar 

  12. Xu, Z., Mayer, A., Muller, E. & Wickner, W. Aheterodimer of thioredoxin and IB2cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136, 299–306 (1997).

    Article  CAS  Google Scholar 

  13. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the rad-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  Google Scholar 

  14. Wada, Y., Ohsumi, Y. & Anraku, Y. Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18665–18670 (1992).

    CAS  PubMed  Google Scholar 

  15. Ohya, Y. & Botstein, D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 263, 963–966 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Conradt, B., Haas, A. & Wickner, W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J. Cell Biol. 126, 99–110 (1994).

    Article  CAS  Google Scholar 

  17. Haas, A., Schleglmann, D., Lazar, T., Gallwitz, D. & Wickner, W. The GTPase Ypt7 of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 14, 5258–5270 (1995).

    Article  CAS  Google Scholar 

  18. Cunningham, K. W. & Fink, G. R. Ca2+ transport in Saccharomyces cerevisiae. J. Exp. Biol. 196, 157–166 (1994).

    CAS  PubMed  Google Scholar 

  19. Geiser, J. R., Sundberg, H. A., Chang, B. H., Muller, E. G. D. & Davis, T. N. The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in S. cerevisiae. Mol. Cell. Biol. 13, 7913–7924 (1993).

    Article  CAS  Google Scholar 

  20. Kübler, E., Schimmöller, F. & Riezmann, H. Ca2+-independent calmodulin requirement for endocytosis in yeast. EMBO J. 13, 5539–5546 (1994).

    Article  Google Scholar 

  21. Geiser, J. R., van Tuinen, D., Brockerhoff, S. E., Neff, M. & Davis, T. N. Can calmodulin function without Ca2+? Cell 65, 949–959 (1991).

    Article  CAS  Google Scholar 

  22. Brockerhoff, S. E. & Davis, T. N. Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J. Cell Biol. 118, 619–629 (1992).

    Article  CAS  Google Scholar 

  23. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  24. Steyer, J. A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Holz, R. W., Bittner, M. A., Peppers, S. C., Senter, R. A. & Eberhardt, D. A. MgATP-independent and MgATP-dependent exocytosis. J. Biol. Chem. 264, 5412–5419 (1989).

    CAS  PubMed  Google Scholar 

  26. Steinhardt, R. A. & Alderton, J. M. Calmodulin confers Ca2+ sensitivity on secretory exocytosis. Nature 295, 154–155 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Apodaca, G., Enrich, C. & Mostov, K. E. The calmodulin antagonist, W-13, alters transcytosis, recycling, and the morphology of the endocytic pathway in MDCK cells. J. Biol. Chem. 269, 19005–19013 (1994).

    CAS  PubMed  Google Scholar 

  28. Kibble, V. A. & Burgoyne, R. D. Calmodulin increases the initial rate of exocytosis in adrenal chromaffin cells. Eur. J. Physiol. 431, 464–466 (1996).

    Article  CAS  Google Scholar 

  29. Artalejo, C. R., Elhamdani, A. & Palfrey, H. C. Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–205 (1996).

    Article  CAS  Google Scholar 

  30. Vida, T., & Emr, S. D. Anew vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Davis for many strains and stimulating discussions; B. Wickner for the start-up kit of reagents; D. Botstein for the calmodulin ts mutants; and P. Overath and U. Henning for their support and the opportunity to use their facilities. We thank O. Müller, P. Overath and B. Wickner for critically reading the manuscript and A. Glatz and C. Baradoy for assistance. This work was supported by the Boehringer Ingelheim Foundation and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, C., Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998). https://doi.org/10.1038/25133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25133

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing