Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity–oblateness feedback

Abstract

Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic1,2 (about 2.4–2.2 Gyr ago) and Neoproterozoic3,4,5,6,7,8 (about 820–550 Myr ago) eras, although some of the Neoproterozoic data are disputed9,10. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics — the ‘snowball Earth’ hypothesis8 — or the present zonation of climate with respect to latitude must have been reversed. Williams11 has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet12. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity–oblateness feedback13 could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Relative rate of obliquity drift as a function of a ice-sheet-formation phase lag.
Figure 2: Insolation and relative sea level for the period defining the last deglaciation.
Figure 3: Obliquity 600–500 Myr ago.

References

  1. Evans, D. A., Beukes, N. J. & Kirschvink, J. L. Low-latitude glaciation in the Palaeopropterozoic era. Nature 386, 262–266 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Williams, G. E. Schmidt, P. W. Paleomagnetism of the Palaeoproterozoic Gowganda and Lorrain formations, Ontario: low paleolatitude for Huronian glaciation. Earth Planet. Sci. Lett. 153, 157–169 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Frakes, L. A. Climates Throughout Geologic Time (Elsevier, Amsterdam, (1979)).

    Google Scholar 

  4. Embleton, B. J. & Williams, G. E. Low paleolatitude of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology. Earth Planet. Sci. Lett. 79, 419–430 (1986).

    Article  ADS  Google Scholar 

  5. Zhang, H. & Zhang, W. Palaeomagnetic data, late Precambrian magnetostratigraphy, and tectonic evolution of eastern China. Precambr. Res. 29, 65–75 (1985).

    Article  ADS  Google Scholar 

  6. Schmidt, P. W. & Williams, G. E. The Neoproterozoic climatic paradox: Equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth Planet. Sci. Lett. 134, 107–124 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Park, J. K. Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada. Can. J. Earth Sci. 34, 34–49 (1997).

    Article  ADS  Google Scholar 

  8. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. ANeoproterozoic snowball Earth. Science 281, 1342–1346 ((1998)).

    Article  ADS  CAS  Google Scholar 

  9. Meert, J. G. & Van der Voo, R. The Neoproterozoic (1000-540 Ma) glacial intervals: No more snowball earth? Earth Planet. Sci. Lett. 123, 1–13 (1994).

    Article  ADS  Google Scholar 

  10. Williams, G. E., Schmidt, P. W., Embleton, B. J., Meert, J. G. & Van der Voo, R. The Neoproterozoic (1000-540 Ma) glacial intervals; no more snowball earth?; discussion and reply. Earth Planet. Sci. Lett. 131, 115–125 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Williams, G. E. History of the Earth's obliquity. Earth Sci. Rev. 34, 1–45 (1993).

    Article  ADS  Google Scholar 

  12. Ward, W. R. Climatic variations on Mars: I. Astronomical theory of insolation. J. Geophys. Res. 79, 3375–3386 (1974).

    Article  ADS  Google Scholar 

  13. Rubincam, D. P. The obliquity of Mars and “climate friction”. J. Geophys. Res. 98, 10827–10832 (1993).

    Article  ADS  Google Scholar 

  14. Crowley, T. J. & Baum, S. K. Effect of decreased solar luminosity on Late Precambrian ice extent. J. Geophys. Res. 98, 16723–16732 (1993).

    Article  ADS  Google Scholar 

  15. Caldeira, K. & Kasting, J. F. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359, 226–228 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Vanyo, J. P. & Awramik, S. M. Length of day and obliquity of the ecliptic 850 Ma ago — preliminary results of a stromatolite growth model. Geophys. Res. Lett. 9, 1125–1128 (1982).

    Article  ADS  Google Scholar 

  17. Awramik, S. M. & Vanyo, J. P. Heliotropism in modern stromatolites. Science 231, 1279–1281 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Rochester, M. G. The secular decrease of obliquity due to dissipative core-mantle coupling. Geophys. J. R. Astron. Soc. 46, 109–126 (1976).

    Article  ADS  Google Scholar 

  19. Bills, B. G. Obliquity-oblateness feedback: Are climatically sensitive values of obliquity dynamically unstable? Geophys. Res. Lett. 21, 177–180 (1994).

    Article  ADS  Google Scholar 

  20. Rubincam, D. P. Has climate changed Earth's tilt? Paleoceanography 10, 365–372 (1995).

    Article  ADS  Google Scholar 

  21. Peltier, W. R. & Jiang, X. Precession constant of the Earth: Variations through the ice-age. Geophys. Res. Lett. 21, 2299–2302 (1994).

    Article  ADS  Google Scholar 

  22. Ito, T., Masuda, K., Hamano, Y. & Matsui, T. Climate friction: A possible cause for secular drift of Earth's obliquity. J. Geophys. Res. 100, 15147–15161 (1995).

    Article  ADS  Google Scholar 

  23. Williams, D. M. The Stability of Habitable Planetary Environments.Thesis. Pennsylvania State Univ.((1998)).

    Google Scholar 

  24. Hecht, J. & Scotese, C. R. Ages of the Earth (MacMillan, New York, (1997)).

    Google Scholar 

  25. Imbrie, J. et al. On the structure and origin of major glaciation cycles: 1. linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    Article  ADS  Google Scholar 

  26. Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    Article  ADS  Google Scholar 

  27. Laskar, J., Joutel, F. & Robutel, P. Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astron. Astrophys. 270, 522–533 (1993).

    ADS  Google Scholar 

  28. Goldreich, P. History of the lunar orbit. Rev. Geophys. 4, 411–439 (1966).

    Article  ADS  Google Scholar 

  29. Touma, J. & Wisdom, J. Evolution of the Earth-Moon system. Astron. J. 108, 1943–1961 (1994).

    Article  ADS  Google Scholar 

  30. Ida, S., Canup, R. M. & Stewart, G. R. Lunar accretion from an impact-generated disk. Nature 389, 353–357 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Rubincam, D. P. Tidal friction and the early history of the Moon's orbit. J. Geophys. Res. 80, 1537–1548 (1975).

    Article  ADS  Google Scholar 

  32. Touma, J. & Wisdom, J. Resonances in the early evolution of the Earth-Moon system. Astron. J. 115, 1653–1663 (1998).

    Article  ADS  Google Scholar 

  33. Walker, J. C. G. & Zahnle, K. J. Lunar nodal tide and the distance to the Moon during the Precambrian. Nature 320, 600–602 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Peltier, W. R. Ice age paleotopography. Science 265, 195–201 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Levison and M. Duncan for the orbital integration code (SWIFT) and J. Laskar for the code used to integrate the precession equations. We also acknowledge discussions with J.Melosh and R. Canup concerning the lunar inclination. D.M.W. was supported by a NASA graduate student research fellowship awarded in 1995, and J.F.K. was supported by the NASA Exobiology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren M. Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, D., Kasting, J. & Frakes, L. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity–oblateness feedback. Nature 396, 453–455 (1998). https://doi.org/10.1038/24845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24845

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing