Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuronal synchrony does not represent texture segregation

Abstract

The visual environment is perceived as an organized whole of objects and their surroundings. In many visual cortical areas, however, neurons are typically activated when a stimulus is presented over a very limited portion of the visual field, the receptive field of that neuron1,2,3,4. To bridge the gap between this piecewise neuronal analysis and our global visual percepts, it has been postulated that neurons representing elements of the same object fire in synchrony to represent the perceptual organization of a scene5,6,7,8,9,10. Experiments with stimuli such as moving bars or gratings have provided evidence for this hypothesis11,12,13,14,15,16. We have further tested this by presenting monkeys with various textured scenes consisting of a figure on a background, and recorded neuronal activity in the primary visual cortex (area V1). Our results show no systematic relationship between the synchrony of firing of pairs of neurons and the perceptual organization of the scene. Instead, pairs of recording sites representing elements of the same figure most commonly showed equal amounts of synchrony between them as did pairs of which one site represented the figure and the other the background. We conclude that synchronin V1 does not reflect the binding of features that leads to texture segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrations (not replications) of the three types of figure–ground display used in this study.
Figure 2: Complementary stimulus pairs, responses and cross-correlograms.
Figure 3: Population synchrony.
Figure 4: Mean population synchrony, and synchrony for specific populations of pairs.

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J.Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  2. Hubel, D. H. & Wiesel, T. N. Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. 198, 1–59 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Schiller, P. H., Finlay, B. L. & Volman, S. F. Quantitative studies of single cell properties in monkey striate cortex I–V. J. Neurophysiol. 39, 1288–1374 (1976).

    Article  CAS  Google Scholar 

  4. Maunsell, J. H. R. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  CAS  Google Scholar 

  5. Milner, P. M. Amodel for visual shape recognition. Psychol. Rev. 81, 521–535 (1974).

    Article  CAS  Google Scholar 

  6. von der Malsburg, C. & Schneider, W. Aneural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986).

    Article  CAS  Google Scholar 

  7. Eckhorn, R. et al. Coherent oscillations: a mechanism for feature linking in the visual cortex? Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  Google Scholar 

  8. Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B. & Singer, W. Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci. 15, 218–226 (1992).

    Article  CAS  Google Scholar 

  9. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  Google Scholar 

  10. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  11. Gray, C. M., Engel, A. K., König, P. & Singer, W. Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Engel, A. K., König, P. & Singer, W. Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl Acad. Sci. USA 88, 9136–9140 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Kreiter, A. K. & Singer, W. Stimulus dependent synchronization of neuronal responses in the visual cortex of awake macaque monkey. J. Neurosci. 16, 2381–2396 (1996).

    Article  CAS  Google Scholar 

  14. Livingstone, M. S. Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J. Neurophysiol. 75, 2467–2485 (1996).

    Article  CAS  Google Scholar 

  15. Freiwald, W. A., Kreiter, A. K. & Singer, W. Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. Neuroreport 6, 2348–2352 (1995).

    Article  CAS  Google Scholar 

  16. Brosch, M., Bauer, R. & Eckhorn, R. Stimulus dependent modulations of correlated high-frequency oscillations in cat visual cortex. Cerebral Cortex 7, 70–76 (1997).

    Article  CAS  Google Scholar 

  17. Lamme, V. A. F., van Dijk, B. W. & Spekreijse, H. Texture segregation is processed by primary visual cortex in man and monkey. Evidence from VEP experiments. Vision Res. 32, 797–807 (1992).

    Article  CAS  Google Scholar 

  18. Lamme, V. A. F., van Dijk, B. W. & Spekreijse, H. Contour from motion processing occurs in primary visual cortex. Nature 363, 541–543 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Lamme, V. A. F. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  Google Scholar 

  20. König, P., Engel, A. K., Roelfsema, P. R. & Singer, W. How precise is neuronal synchronization? Neur. Comput. 7, 469–485 (1995).

    Article  Google Scholar 

  21. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  22. Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal and cortico-cortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  23. Malach, R., Amir, Y., Harel, M. & Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl Acad. Sci. USA 90, 10469–10473 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Krüger, J. & Aiple, F. The connectivity underlying the orientation selectivity in the infragranular layers of monkey striate cortex. Brain Res. 477, 57–65 (1989).

    Article  Google Scholar 

  25. Gilbert, C. D. & Wiesel, T. N. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3, 1116–1133 (1983).

    Article  CAS  Google Scholar 

  26. Gilbert, C. D. Circuitry, architecture and functional dynamics of visual cortex. Cerebral Cortex 3, 373–386 (1993).

    Article  CAS  Google Scholar 

  27. Lamme, V. A. F., Zipser, K. & Spekreijse, H. Figure–ground activity in primary visual cortex is suppressed by anesthesia. Proc. Natl Acad. Sci. USA 95, 3263–3268 (1988).

    Article  ADS  Google Scholar 

  28. Bour, L. J., van Gisbergen, J. A. M., Bruijns, J. & Ottes, F. P. The double magnetic induction method formeasuring eye movement — results in monkey and man. IEEE Trans. Biomed. Eng. 31, 419–427 (1984).

    Article  CAS  Google Scholar 

  29. van der Togt, C., Lamme, V. A. F. & Spekreijse, H. Functional connectivity within the visual cortex of the rat shows state changes. Eur. J. Neurosci. 10, 1490–1507 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Singer, P. Roelfsema, K. Zipser and C. Van der Togt for comments on an earlier version of the manuscript; K. Brandsma and J. de Feiter for biotechnical support; and P. Brassinga and H. Meester for technical support. This work was supported by a grant from the Royal Netherlands Academy of Arts and Sciences (KNAW) to V.A.F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. F. Lamme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamme, V., Spekreijse, H. Neuronal synchrony does not represent texture segregation. Nature 396, 362–366 (1998). https://doi.org/10.1038/24608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24608

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing