Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A multiwavelength semiconductor laser

Abstract

Many systems, such as atoms and molecules in gas mixtures, dye solutions and some solid-state materials, can exhibit simultaneous laser action at several wavelengths as a result of the excitation of several optical transitions1. But semiconductor lasers are usually monochromatic because the electronic levels are distributed in continuous energy bands2. In order to achieve simultaneous lasing at several well-separated wavelengths, researchers have proposed3 combining different semiconductors with distinct bandgap energies in the active material. However, the difficulty of pumping different regions and of absorption of the shorter-wavelength light could be resolved only by using separated multiple resonators or by multisection injection devices4,5,6,7. Here we report the realization of a single artificial semiconductor material with distinct optical transitions, which permits simultaneous multiwavelength laser action at mid-infrared wavelengths (6.6, 7.3 and 7.9 µm). This is achieved by tailoring the electronic states and electron relaxation times in the material, which is a superlattice layered structure. The laser has potential applications in sensors for trace-gas analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conduction energy band diagrams.
Figure 2: Laser emission spectra.
Figure 3: Light–current and voltage–current characteristics.
Figure 4: Electroluminescence (EL) spectra.

Similar content being viewed by others

References

  1. Silfvast, W. T. Laser Fundamentals (Cambridge Univ. Press, (1996).

    Google Scholar 

  2. Yariv, A. Optical Electronics (Saunders College Publishing, Philadelphia, 1991).

    Google Scholar 

  3. Ikeda, S., Shimizu, A. & Hara, T. Asymmetric dual quantum well laser-wavelength switching controlled by injection current. Appl. Phys. Lett. 55, 1155–1157 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Beernik, K. J., Thornton, R. L. & Chung, H. F. Low threshold current dual wavelength planar buried heterostructure lasers with close spatial and large spectral separation. Appl. Phys. Lett. 64, 1082–1084 (1994).

    Article  ADS  Google Scholar 

  5. Garcia, J. Ch. et al. Epitaxially stacked lasers with Esaki junctions: a bipolar cascade laser. Appl. Phys. Lett. 71, 3752–3754 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Dutta, N. K. et al. InGaAsP closely spaced dual wavelength laser. Appl. Phys. Lett. 48, 1725–1726 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Pellandini, P. et al. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett. 71, 864–866 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Sirtori, C., Capasso, F., Faist, J. & Scandolo, S. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. Phys. Rev. B 50, 8663–8674 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Faist, J. et al. Short wavelength (λ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Gmachl, C. et al. Long wavelength (λ 13µm) quantum cascade lasers. Electron. Lett. 34, 1103–1104 (1998).

    Article  CAS  Google Scholar 

  12. Capasso, F., Faist, J., Sirtori, C. & Cho, A. Y. Infrared (4–11 µm) quantum cascade lasers. Solid State Commun. 102, 231–236 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Gmachl, C. et al. Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade lasers at λ ≈ 8.5 µm. Appl. Phys. Lett. 72, 1430–1432 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Namjou, K. et al. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 23, 219–221 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Sharpe, S. W. et al. High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers. Opt. Lett. 23, 1396–1398 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Sigrist, M. W. Air Monitoring by Spectroscopic Techniques (Wiley, New York, (1994).

    Google Scholar 

  17. Faist, J. et al. Laser action by tuning the oscillator strength. Nature 387, 777–782 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Scamarcio, G. et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science 276, 773–776 (1997).

    Article  CAS  Google Scholar 

  19. Dingle, R., Gossard, A. C. & Wiegmann, W. Direct observation of superlattice formation in a semiconductor heterostructure. Phys. Rev. Lett. 34, 1327–1330 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Tredicucci, A. et al. High-power inter-miniband lasing in intrinsic superlattices. Appl. Phys. Lett. 72, 2388–2390 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Ferreira, R. & Bastard, G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys. Rev. B 40, 1074–1086 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Sirtori, C. et al. Continuous wave operation of midinfrared (7.4–8.6 µm) quantum cascade lasers up to 110 K temperature. Appl. Phys. Lett. 68, 1745–1747 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Hakki, B. W. & Paoli, T. L. Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46, 1299–1306 (1975).

    Article  ADS  CAS  Google Scholar 

  24. Mendez, E. E., Agullo-Rueda, F. & Hong, J. M. Stark localization in GaAs-GaAlAs superlattices under an electric field. Phys. Rev. Lett. 60, 2426–2429 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Office of Naval Research and by DARPA/US Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Capasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tredicucci, A., Gmachl, C., Capasso, F. et al. A multiwavelength semiconductor laser. Nature 396, 350–353 (1998). https://doi.org/10.1038/24585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing