Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Paramagnetic Meissner effect in small superconductors

Abstract

A superconductor placed in a magnetic field and cooled down through the transition temperature expels magnetic flux. This phenomenon, known as the Meissner effect, is arguably the most essential property of superconductors and implies zero resistivity. Surprisingly, several recent experiments have shown that some superconducting samples1,2,3,4,5,6,7 may attract magnetic field—the so-called paramagnetic Meissner effect. The scarce, if not controversial, experimental evidence for this effect makes it difficult to identify the origin of this enigmatic phenomenon, although a large number of possible explanations have been advanced8,9,10,11,12,13,14,15,16. Here we report observations of the paramagnetic Meissner effect with a resolution better than one quantum of magnetic flux. The paramagnetic Meissner effect is found to be an oscillating function of the magnetic field (due to flux quantization) and replaces the normal Meissner effect only above a certain field when several flux quanta are frozen inside a superconductor. The paramagnetic state is found to be metastable and the Meissner state can be restored by external noise. We conclude that the paramagnetic Meissner effect is related to the surface superconductivity and, therefore, represents a general property of superconductors: on decreasing temperature, the flux captured at the third (surface) critical field inside the superconducting sheath compresses into a smaller volume, allowing extra flux to penetrate at the surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic susceptibility χ of an aluminium disk for various magnetic fields perpendicular to the disk surface.
Figure 2: Detailed field dependence of the Meissner response.
Figure 3: Comparison of the magnetization states reached by cooling in a field and by sweeping the field at a constant temperature.

Similar content being viewed by others

References

  1. Braunisch, W. et al. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys. Rev. Lett. 68, 1908–1911 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Schliepe, B., Stindtmann, M., Nikolic, I. & Baberschke, K. Positive field-cooled susceptibility in high-TCsuperconductors. Phys. Rev. B 47, 8331–8334 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Heizel, C., Theiling, T. & Zieman, P. Paramagnetic Meissner effect analyzed by 2nd harmonics of the magnetic susceptibiity. Phys. Rev. B 48, 3445–3454 (1993).

    Article  ADS  Google Scholar 

  4. Magnusson, J. et al. Time-dependence of the magnetization of BiSrCaCuO displaying the paramagnetic Meissner effect. Phys. Rev. B 52, 7675–7681 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Riedling, S. et al. Observation of the Wohlleben effect in YBaCuO single crystals. Phys. Rev. B 49, 13283–13286 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Thompson, D. J., Minhaj, M. S. M., Wenger, L. E. & Chen, J. T. Observation of paramagnetic Meissner effect in niobium disks. Phys. Rev. Lett. 75, 529–532 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kostic, P. et al. Paramagnetic Meissner effect in Nb. Phys. Rev. B 53, 791–801 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Sigrist, M. & Rice, T. M. Paramagnetic effect in High-TCsuperconductors—a hint for d-wave superconductivity. J. Phys. Soc. Jpn 61, 4283–4286 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Kusmartsev, F. V. Destruction of the Meissner effect in granular high-temperature superconductors. Phys. Rev. Lett. 69, 2268–2271 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Dominguez, D., Jagla, E. A. & Balseiro, C. A. Phenomenological theory of the paramagnetic Meissner effect. Phys. Rev. Lett. 72, 2773–2776 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Khomskii, D. Wohlleben effect (paramagnetic Meissner effect) in high-temperature superconductors. J. Low Temp. Phys. 95, 205–223 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Chen, D. X. & Hernando, A. Paramagnetic Meissner effect and pi Josephson junctions. Europhys. Lett. 26, 365–370 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Shrivastava, K. N. Para-Meissner oscillations in the magnetization of a high-temperature superconductor. Phys. Lett. A 188, 182–186 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Koshelev, A. E. & Larkin, A. I. Paramagnetic moment in field-cooled superconducting plates—paramagnetic Meissner effect. Phys. Rev. B 52, 13559–13562 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Khalil, A. E. Inversion of Meissner effect and granular disorder in BiSrCaCuO superconductors. Phys. Rev. B 55, 6625–6630 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Moshchalkov, V. V., Qui, X. G. & Bruyndoncz, V. Paramagnetic Meissner effect from the self-consistent solution of the Ginzburg–Landau equations. Phys. Rev. B 55, 11793–11801 (1997).

    Article  ADS  Google Scholar 

  17. Rice, T. M. & Sigrist, M. Paramagnetic Meissner effect in Nb—Comment. Phys. Rev. B 55, 14647–14848 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Geim, A. K. et al. Phase transitions in individual sub-micrometre superconductors. Nature 390, 259–262 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Schweigert, V. A. & Peeters, F. M. Phase transitions in thin superconducting disks. Phys. Rev. B 57, 13817–13832 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Schweigert, V. A., Peeters, F. M. & Deo, P. S. Vortex phase diagram for mesoscopic superconducting disks. Phys. Rev. Lett. 81, 2783–2786 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Bolech, A. C., Buscaglia, G. C. & Lopez, A. Numerical simulation of vortex arrays in thin superconducting films. Phys. Rev. B 52, 15719–15722 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Geim, A. K. et al. Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379–2381 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Bezryadin, A., Buzdin, A. & Pannetier, B. Phase diagram of multiply connected superconductors. Phys. Rev. B 51, 3718–3724 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Benoist, R. & Zwerger, W. Critical fields of mesoscopic superconductors. Z. Phys. B 103, 377–381 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Palacios, J. J. Vortex matter in superconducting mesoscopic disks: structure, magnetization, and phase transitons. Phys. Rev. B 58,, R5948–R5951 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. V. Grigorieva, V. V. Moschalkov and F. M. Peeters for discussions and FOM for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Geim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geim, A., Dubonos, S., Lok, J. et al. Paramagnetic Meissner effect in small superconductors. Nature 396, 144–146 (1998). https://doi.org/10.1038/24110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24110

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing