Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Illusory shifts in visual direction accompany adaptation of saccadic eye movements

Abstract

A central problem in human vision is to explain how the visual world remains stable despite the continual displacements of the retinal image produced by rapid saccadic movements of the eyes. Perceived stability has been attributed to ‘efferent-copy’ signals, representing the saccadic motor commands, that cancel the effects of saccade-related retinal displacements1,2,3,4,5,6. Here we show, by means of a perceptual illusion, that traditional cancellation theories cannot explain stability. The perceptual illusion was produced by first inducing adaptive changes in saccadic gain (ratio of saccade size to target eccentricity). Following adaptation, subjects experienced an illusory mislocalization in which widely separated targets flashed before and after saccades appeared to be in the same place. The illusion shows that the perceptual system did not takethe adaptive changes into account. Perceptual localization is based on signals representing the size of the initially-intended saccade, not the size of the saccade that is ultimately executed. Signals representing intended saccades initiate a visual comparison process used to maintain perceptual stability across saccades and to generate the oculomotor error signals that ensure saccadic accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative traces of horizontal eye (solid line) and stimulus position (dotted line).
Figure 2: Saccadic adaptation and perceptual localization for each subject.
Figure 3: Magnitude of saccadic adaptation plotted against the size of the perceptual illusion.

Similar content being viewed by others

References

  1. von Helmholtz, H. Treatise on Physiological Optics vol. 3 (1910) (trans. Southall, J. P. C.) (Dover, New York, 1963).

    MATH  Google Scholar 

  2. von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950).

    Article  ADS  Google Scholar 

  3. MacKay, D. M. in Handbook of Sensory Physiology vol. VII/3: Central Processing of Visual Information (ed. Jung, R.) 307–331 (Springer, Berlin, 1973).

    Google Scholar 

  4. Matin, L. in Handbook of Sensory Physiologyvol. VII/4: Visual Psychophysics (eds Jameson, D. & Hurvich, L. M.) 331–380 (Springer, Berlin, 1972).

    Google Scholar 

  5. Skavenski, A. A., Haddad, G. M. & Steinman, R. M. The extraretinal signal for the visual perception of direction. Percept. Psychophys. 11, 287–290 (1972).

    Article  Google Scholar 

  6. Skavenski, A. A. in Eye Movements and Their Role in Visual and Cognitice Processes (ed. Kowler, E.) 263–287 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  7. McLaughlin, S. C. Parametric adjustment in saccadic eye movement. Percept. Psychophys. 2, 359–362 (1967).

    Article  Google Scholar 

  8. Deubel, H. Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Res. 35, 3529–3540 (1995).

    Article  CAS  Google Scholar 

  9. Miller, J. M., Anstis, T. & Templeton, W. B. Saccadic plasticity: parametric adaptive control by retinal feedback. J. Exp. Psychol. Hum. Percept. Perform. 7, 356–366 (1981).

    Article  CAS  Google Scholar 

  10. Erkelens, C. J. & Hulleman, J. Selective adaptation of internally triggered saccades made to visual targets. Exp. Brain Res. 93, 157–164 (1993).

    Article  CAS  Google Scholar 

  11. Carpenter, R. H. S. Movements of the Eyes2nd edn (Pion Press, 1992).

    Google Scholar 

  12. Kowler, E. & Blaser, E. The accuracy and precision of saccades to small and large targets. Vision Res. 35, 1741–1754 (1995).

    Article  CAS  Google Scholar 

  13. Matin, L. & Pearce, D. G. Visual perception of direction for stimuli flashed during voluntary saccadic eye movement. Science 165, 1485–1488 (1965).

    Article  ADS  Google Scholar 

  14. Lennie, P. & Sidwell, A. Saccadic eye movements and visual stability. Nature 275, 766–768 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Dassonville, P., Schlag, J. & Schlag-Rey, M. Oculomotor localization relies of a damped representation of saccadic eye displacement in human and nonhuman primates. Vis. Neurosci. 9, 261–269 (1992).

    Article  CAS  Google Scholar 

  16. Sperling, G. in Eye Movements and Their Role in Visual and Cognitive Processes (ed. Kowler, E.) 307–351 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  17. Goodale, M. A., Pelisson, D. & Prablanc, C. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320, 748–750 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Res. 36, 985–996 (1996).

    Article  CAS  Google Scholar 

  19. Ludvigh, E. Control of ocular movements and visual interpretation of environment. AMA Arch. Ophthalmol. 48, 442–448 (1952).

    Article  CAS  Google Scholar 

  20. Pola, J. in Eye Movements and Psychological Processes (eds Monty, R. A. & Senders, J. W.) 245–254 (Erlbaum, Hillsdale, New Jersey, 1976).

    Google Scholar 

  21. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Optican, L. M. in Adaptive Mechanisms in Gaze Control (eds Berthoz, A. & Melvill-Jones, G.) 71–79 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  24. Goldberg, M. E., Musil, S. Y., Fitzgibbon, E. J., Smith, M. & Olson, C. R. in Role of the Cerebellum and Basal Ganglia in Voluntary Movements (eds Mano, M., Hamada, I. & DeLong, M. R.) 203–211 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  25. Frens, M. A. & Van Opstal, A. J. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res. Bull. 43, 473–483 (1997).

    Article  CAS  Google Scholar 

  26. Desmurget, M. et al. Functional anatomy of saccadic adaptation in humans. Nature Neurosci. 1, 524–528 (1998).

    Article  CAS  Google Scholar 

  27. Crane, H. D. & Steele, C. S. Accurate three-dimensional eyetracker. Appl. Opt. 17, 691–705 (1978).

    Article  ADS  CAS  Google Scholar 

  28. McGowan, J., Kowler, E., Sharma, A. & Chubb, C. Saccadic localization of random dot patterns. Vision Res. 38, 895–909 (1998).

    Article  CAS  Google Scholar 

  29. Cornsweet, T. The staircase method in psychophysics. Am. J. Psychol. 75, 485–491 (1962).

    Article  CAS  Google Scholar 

  30. Leigh, R. J. & Zee, D. S. The Neurobiology of Eye Movements 82 (F. A. Davis, Philadelphia, 1991).

    Google Scholar 

Download references

Acknowledgements

Supported by the U.S. Air Force Office of Scientific Research, Life Sciences Directorate, Program on Spatial Orientation. We thank J. Feldman and M. Regan for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Kowler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahcall, D., Kowler, E. Illusory shifts in visual direction accompany adaptation of saccadic eye movements. Nature 400, 864–866 (1999). https://doi.org/10.1038/23693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23693

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing