Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination

Abstract

The manufacture of a range of bulk and fine chemicals, including flame retardants, disinfectants and antibacterial and antiviral drugs, involves bromination1. Conventional bromination methods typically use elemental bromine, a pollutant and a safety and health hazard. Attempts to develop alternative and more benign strategies have been inspired by haloperoxidase enzymes, which achieve selective halogenation at room temperature and nearly neutral pH by oxidizing inorganic halides with hydrogen peroxide2,3. The enzyme vanadium bromoperoxidase has attracted particular interest4,5 in this regard, and several homogeneous inorganic catalysts mimicking its activity are available6,7,8,9,10,11, although they are limited by the requirement for strongly acidic reaction media. A heterogenous mimic operating at neutral pH has also been reported12, but shows only modest catalytic activity. Here we describe a tungstate-exchanged layered double hydroxide that catalyses oxidative bromination and bromide-assisted epoxidation reactions in a selective manner. We find that the catalyst is over 100 times more active than its homogeneous analogue. The low cost and heterogeneous character of this system, together with its ability to operate efficiently under mild conditions using bromides rather than elemental bromine, raise the prospect of being able to develop a clean and efficient industrial route to brominated chemicals and drugs and epoxide intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytic cycle in bromination with WO42−LDH.
Figure 2: Bromide-assisted 1O2 generation, catalysed by WO42−(MgAl)LDH.

Similar content being viewed by others

References

  1. Ullmann's Encyclopedia of Industrial Chemistry 6th edn (Electronic release, Wiley-VCH, Weinheim, 1998).

  2. Gribble, G. W. Naturally occurring organohalogen compounds. Acc. Chem. Res. 31, 141–152 (1998).

    Article  CAS  Google Scholar 

  3. Butler, A. & Walker, J. V. Marine haloperoxidases. Chem. Rev. 93, 1937–1944 (1993).

    Article  CAS  Google Scholar 

  4. Franssen, M. C. R. & van der Plas, H. C. Haloperoxidases: their properties and their use in organic synthesis. Adv. Appl. Microbiol. 37, 41–99 (1992).

    Article  CAS  Google Scholar 

  5. Butler, A. in Bioinorganic Catalysis (ed. Reedijk, J.) Ch. 13 (Dekker, New York, 1993).

    Google Scholar 

  6. Conte, V., Di Furia, F. & Moro, S. Mimicking the vanadium bromoperoxidase reactions: mild and selective bromination of arenes and alkenes in a two-phase system. Tetrahedr. Lett. 35, 7429–7432 (1994).

    Article  CAS  Google Scholar 

  7. Reynolds, M. S., Morandi, S. J., Raebiger, J. W., Melican, S. P. & Smith, S. P. E. Kinetics of bromide oxidation by (oxalato)oxodiperoxomolybdate(VI). Inorg. Chem. 33, 4977–4984 (1994).

    Article  CAS  Google Scholar 

  8. Espenson, J. H., Pestovsky, O., Huston, P. & Staudt, S. Organometallic catalysis in aqueous solution: oxygen transfer to bromide. J. Am. Chem. Soc. 116, 2869–2877 (1994).

    Article  CAS  Google Scholar 

  9. Clague, M. J. & Butler, A. On the mechanism of cis-dioxovanadium(V)-catalyzed oxidation of bromide by hydrogen peroxide: evidence for a reactive, binuclear vanadium(V) peroxo complex. J. Am. Chem. Soc. 117, 3475–3484 (1995).

    Article  CAS  Google Scholar 

  10. Meister, G. E. & Butler, A. Molybdenum(VI)- and tungsten(VI)-mediated biomimetic chemistry of vanadium bromoperoxidase. Inorg. Chem. 33, 3269–3275 (1994).

    Article  CAS  Google Scholar 

  11. Hamstra, B. J., Colpas, G. J. & Pecoraro, V. L. Reactivity of dioxovanadium(V) complexes with hydrogen peroxide: implications for vanadium haloperoxidase. Inorg. Chem. 37, 949–955 (1998).

    Article  CAS  Google Scholar 

  12. Walker, J. V. et al. Peroxidative halogenation catalyzed by transition-metal-ion-grafted mesoporous silicate materials. J. Am. Chem. Soc. 119, 6921–6922 (1997).

    Article  CAS  Google Scholar 

  13. Trifirò, F. & Vaccari, A. in Comprehensive Supramolecular Chemistry Vol. 7, 251 (Pergamon, Elsevier Science, Oxford, 1996).

    Google Scholar 

  14. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1986).

    Google Scholar 

  15. Soedjak, H. S. & Butler, A. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum. Biochem. Biophys. Acta 1079, 1–7 (1991).

    CAS  PubMed  Google Scholar 

  16. Held, A. M., Halko, D. J. & Hurst, J. K. Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 100, 5732–5740 (1978).

    Article  CAS  Google Scholar 

  17. Everett, R. R., Kanofsky, J. R. & Butler, A. Mechanistic investigations of the novel non-heme Vanadium bromoperoxidases. J. Biol. Chem. 265, 4908–4914 (1990).

    CAS  PubMed  Google Scholar 

  18. Frimer, A. A. Singlet Oxygen (CRC, Boca Raton, Florida, 1985).

    Google Scholar 

  19. Schubert, W. M. & Keeffe, J. R. The acid-catalyzed hydration of styrenes. J. Am. Chem. Soc. 94, 559–566 (1972).

    Article  CAS  Google Scholar 

  20. Yates, K., McDonald, R. S. & Shapiro, S. A. Kinetics and mechanisms of electrophilic addition. I. A comparison of second- and third-order brominations. J. Org. Chem. 38, 2460–2463 (1973).

    Article  CAS  Google Scholar 

  21. Messerschmidt, A. & Wever, R. X-ray structure of a vanadium-containing enzyme: Chloroperoxidase from the fungus Curvularia inaequalis. Proc. Natl. Acad. Sci. USA 93, 392–396 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Maschmeyer, T., Rey, T., Sankar, F. & Thomas, J. M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1996).

    Article  ADS  Google Scholar 

  24. Huybrechts, D. R. C., De Bruycker, L. & Jacobs, P. A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature 345, 240–242 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Knops-Gerrits, P.-P., De Vos, D., Thibault-Starzyk, F. & Jacobs, P. A. Zeolite-encapsulated Mn(II) complexes as catalysts for selective alkene oxidation. Nature 369, 543–546 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Kadima, T. A. & Pickard, M. A. Immobilization of chloroperoxidase on aminopropyl-glass. Appl. Environ. Microbiol. 56, 3473–3477 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roouhi, M. New reaction uncouples epoxidation from acidity. Chem. Eng. News 7 July, 6–7 (1997).

  28. Itoh, N., Cheng, L., Izumi, Y. & Yamada, H. Immobilized bromoperoxidase of Corallina pilulifera as a multifunctional halogenating biocatalyst. J. Biotechnol. 5, 29–38 (1987).

    Article  CAS  Google Scholar 

  29. Aoun, S. & Baboulène, M. Regioselective bromohydroxylation of alkenes catalyzed by chloroperoxidase: Advantages of the immobilization on talc. J. Mol. Catal. B 4, 101–109 (1998).

    Article  CAS  Google Scholar 

  30. Sheldon, R. A. & Kochi, J. K. Metal-Catalyzed Oxidation of Organic Compounds (Academic, New York, 1981).

    Google Scholar 

  31. Sels, B. F., De Vos, D. E. & Jacobs, P. A. Selective epoxidations involving anionic peroxotungsten compounds generated in situ on layered double hydroxides with various polarities. Tetrahedr. Lett. 37, 8557–8560 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Belgian Ministry of Science Policy for IUAP-PAI sponsoring; B.S., D.D.V. and F.P. acknowledge fellowships from IWT, FWP and IRSIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sels, B., Vos, D., Buntinx, M. et al. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination. Nature 400, 855–857 (1999). https://doi.org/10.1038/23674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23674

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing