Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme

Abstract

Heparin is a sulphated polysaccharide, synthesized exclusively by connective-tissue-type mast cells1 and stored in the secretory granules in complex with histamine and various mast-cell proteases2. Although heparin has long been used as an antithrombotic drug, endogenous heparin is not present in the blood, so it cannot have a physiological role in regulating blood coagulation. The biosynthesis of heparin involves a series of enzymatic reactions, including sulphation at various positions1,3. The initial modification step, catalysed by the enzyme glucosaminyl N -deacetylase/N -sulphotransferase-2, NDST-2 (47), is essential for the subsequent reactions. Here we report that mice carrying a targeted disruption of the gene encoding NDST-2 are unable to synthesize sulphated heparin. These NDST-2-deficient mice are viable and fertile but have fewer connective-tissue-type mast cells; these cells have an altered morphology and contain severely reduced amounts of histamine and mast-cell proteases. Our results indicate that one site of physiological action for heparin could be inside connective-tissue-type mast cells, where its absence results in severe defects in the secretory granules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the NDST-2 locus and establishment of a mutant mouse strain.
Figure 2: Absence of normally sulphated heparin and mast-cell proteases in peritoneal cells from NDST-2 −/− mice.
Figure 3: Absence of normal peritoneal mast cells in NDST-2 −/− mice.
Figure 4: Altered morphology of heparin-containing mast cells.

Similar content being viewed by others

References

  1. Kjellén, L. & Lindahl, U. Proteoglycans: Structure and interactions. Annu. Rev. Biochem. 60, 443–475 (1991).

    Article  PubMed  Google Scholar 

  2. Stevens, R. L. & Austen, K. F. Recent advances in the cellular and molecular biology of mast cells. Immunol. Today 10, 381–386 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Lindahl, U., Kusche-Gullberg, M. & Kjellén, L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979–24982 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Pettersson, I. et al. Biosynthesis of heparin: Purification of a 110?kDa mouse mastrocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J. Biol. Chem. 266, 8044–8049 (1991).

    CAS  PubMed  Google Scholar 

  5. Orellana, A., Hirschberg, C. B., Wei, Z., Swiedler, S. J. & Ishihara, M. Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J. Biol. Chem. 269, 2270–2276 (1994).

    CAS  PubMed  Google Scholar 

  6. Eriksson, I., Sandbäck, D., Ek, B., Lindahl, U. & Kjellén, L. cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase. J. Biol. Chem. 269, 10438–10443 (1994).

    CAS  PubMed  Google Scholar 

  7. Kusche-Gullberg, M., Eriksson, I., Sandbäck-Pikas, D. & Kjellén, L. Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J. Biol. Chem. 273, 11902–11907 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Toma, L., Berninsone, P. & Hirschberg, C. B. The putative heparin-specific N-acetylglucosaminyl N-deacetylase/N-sulfotransferase also occurs in non-heparin-producing cells. J. Biol. Chem. 273, 22458–22465 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto, Y., Orellana, A., Gil, G. & Hirschberg, C. B. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J. Biol. Chem. 267, 15744–15750 (1992).

    CAS  PubMed  Google Scholar 

  10. Aikawa, J-i. & Esko, J. D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J. Biol. Chem. 274, 2690–2695 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl, U., Lidholt, K., Spillman, D. & Kjellén, L. More to “heparin” than anticoagulation. Thromb. Res. 75, 1–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Salmivirta, M., Lidholt, K. & Lindahl, U. Heparan sulfate: A piece of information. FASEB J. 10, 1270–1279 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg, R. D., Shworak, N. W., Liu, J., Schwartz, J. J. & Zhang, L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99, 2062–2070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bullock, S. L., Fletcher, J. M., Beddington, R. S. P. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1905 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Binari, R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).

    CAS  PubMed  Google Scholar 

  16. Haerry, T. E., Heslip, T. R., Marsch, J. L. & O'Connor, M. O. Defects in glucuronate biosynthesis disrupt Wingless signalling in Drosophila. Development 124, 3055–3064 (1997).

    CAS  PubMed  Google Scholar 

  17. Häcker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).

    PubMed  Google Scholar 

  18. Huang, C., Sali, A. & Stevens, R. L. Regulation and function of mast cell proteases in inflammation. J. Clin. Immunol. 18, 169–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lützelschwab, C., Pejler, G., Aveskogh, M. & Hellman, L. Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and carboxypeptidase A from various rat mast cell populations. J. Exp. Med. 185, 13–29 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kusche, M., Lindahl, U., Enerbäck, L. & Rodén, L. Identification of oversulphated and galactosaminoglycans in intestinal-mucosal mast cells of rats infected with the nematode worm Nippostrongylus brasiliensis. Biochem. J. 253, 885–893 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galli, S. J. & Wershil, B. K. The two faces of the mast cell. Nature 381, 21–22 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fässler, R. & Meyer, M. Consequences of lack of β-1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  PubMed  Google Scholar 

  23. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheung, W.-F., Eriksson, I., Kusche-Gullberg, M., Lindahl, U. & Kjellén, L. Expression of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase in human kidney 293 cells results in increased N-sulfation of heparan sulfate. Biochemistry 35, 5250–5256 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lützelschwab, C., Huang, M. R., Kullberg, M. C., Aveskogh, M. & Hellman, L. Characterization of mouse mast cell protease-8, the first member of a novel subfamily of mouse mast cell serine proteases, distinct from both the classical chymases and tryptases. Eur. J. Immunol. 28, 1022–1033 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Nagy for R1 ES cells, and P. Ekblom and U. Lindahl for helpful suggestions and support. This work was supported by grants from the Swedish Natural Science Research Council, the Swedish Medical Research Council, the European commission, Polysackaridforskning AB, Gustaf V:s 80-årsfond, Magnus Bergvalls stiftelse, Wibergs stiftelse and Stiftelsen Lars Hiertas minne. E.F. is a member of Uppsala University Transgenic Facility, supported by the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Kjellén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsberg, E., Pejler, G., Ringvall, M. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999). https://doi.org/10.1038/23488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23488

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing