Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Streaks of microearthquakes along creeping faults

Abstract

Crustal faults that produce most of their slip aseismically typically generate large numbers of small earthquakes. These events have generally been interpreted as coming from localized patches of the fault that undergo unstable (stick–slip) sliding, surrounded by larger regions of stable sliding (creep). In published catalogues the microearthquakes often appear to be distributed over large portions of the fault surface. By accurately locating large numbers of microearthquakes from faults of different orientations in California and Hawaii, we show here that instead the locations define highly concentrated streaks that are characteristically aligned in the direction of fault slip. The underlying cause of this structural organization of the fault surface remains to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the study area.
Figure 2: Vertical along-strike cross-sections showing the earthquakes examined in this study.
Figure 3: Vertical cross-sections of five multiplets, containing 75 to 85 events (a, c and d), 122 events (e), and 201 e.
Figure 4: Solution statistics for the 122-event multiplet of Fig. 3e.
Figure 5: Relocated multiplets from Kilauea volcano, showing bands of microearthquakes nearly parallel to the inferred slip direction.
Figure 6: Plot of the distance to the second earthquake as a function of the magnitude of the first, for each consecutive pair of relocated earthqua.

Similar content being viewed by others

References

  1. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 1990).

    Google Scholar 

  2. Allen, C. R., St Amand, P., Richter, C. F. & Nordquist, J. M. Relationship between seismicity and geologic structure in the southern California region. Bull. Seismol. Soc. Am. 55, 753– 797 (1965).

    Google Scholar 

  3. Wallace, R. E. & Morris, H. T. Characteristics of faults and shear zones in deep mines. Pure Appl. Geophys. 124, 107–125 (1986).

    Article  ADS  Google Scholar 

  4. Chester, F. M., Evans, J. P. & Biegel, R. L. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. 98, 771–786 (1993).

    Article  ADS  Google Scholar 

  5. Got, J-L., Fréchet, J. & Klein, F. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J. Geophys. Res. 99, 15375–15386 ( 1994).

    Article  ADS  Google Scholar 

  6. Dodge, D. A., Beroza, G. C. & Ellsworth, W. L. Foreshock sequence of the 1992 Landers, California earthquake and its implications for earthquake nucleation. J. Geophys. Res. 100, 9865–9880 ( 1995).

    Article  ADS  Google Scholar 

  7. Shearer, P. M. Improving local earthquake locations using the L1 norm and waveform cross-correlation: Application to the Whittier Narrows, California, aftershock sequence. J. Geophys. Res. 102, 8269–8283 (1997).

    Article  ADS  Google Scholar 

  8. Lees, J. M. Multiplet analysis at Coso Geothermal. Bull. Seismol. Soc. Am. 88, 1127–1143 ( 1998).

    Google Scholar 

  9. Waldhauser, F., Ellsworth, W. L. & Cole, A. Slip-parallel seismic lineations on the northern Hayward fault, California. Geophys. Res. Lett.(submitted).

  10. Gladwin, M. T., Gwyther, R. L., Hart, R. H. G. & Breckenridge, K. S. Measurements of the strain field associated with episodic creep events on the San Andreas fault at San Juan Bautista, California. J.Geophys. Res. 99, 4559–4565 ( 1994).

    Article  ADS  Google Scholar 

  11. Linde, A. T., Gladwin, M. T., Johnson, M. J. S., Gwyther, R. L. & Bilham, R. G. Aslow earthquake sequence on the San Andreas Fault. Nature 383, 65–68 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Johnston, M. J. S. Near-silent earthquakes on the San Andreas fault system. Eos 78, F156 (1997).

    Article  Google Scholar 

  13. Thatcher, W., Marshall, G. & Lisowski, M. Resolution of fault slip along the 470-km-long rupture of the great 1906 San Francisco earthquake and its implications. J. Geophys. Res. 102, 5353–5367 (1997).

    Article  ADS  Google Scholar 

  14. VanDecar, J. C. & Crosson, R. S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc. Am. 80, 159–169 (1990).

    Google Scholar 

  15. Gillard, D., Rubin, A. M. & Okubo, P. Highly concentrated seismicity caused by deformation of Kilauea's deep magma system. Nature 384, 343–346 (1996).

    Article  ADS  Google Scholar 

  16. Thurber, C. H.et al . Two-dimensional seismic images of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone. Geophys. Res. Lett. 24, 1591–1594 (1997).

    Article  ADS  Google Scholar 

  17. Eberhart-Phillips, D. & Michael, A. J. Seismotectonics of the Loma Prieta, California region determined from three-dimensional V p, V p/V s, and seismicity. J. Geophys. Res. 103, 21099–21120 (1998).

    Article  ADS  Google Scholar 

  18. Abercrombie, R. E. The magnitude-frequency distribution of earthquakes recorded with deep seismometers at Cajon Pass, southern California. Tectonophysics 261, 1–7 (1996).

    Article  ADS  Google Scholar 

  19. Poupinet, G., Ellsworth, W. L. & Frechet, J. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California. J. Geophys. Res. 102, 5719–5731 (1984).

    Article  ADS  Google Scholar 

  20. Vidale, J. E., Ellsworth, W. L., Cole, A. & Marone, C. Variations in rupture process with recurrence interval in a repeated small earthquake. Nature 368, 624– 626 (1994).

    Article  ADS  Google Scholar 

  21. Nadeau, R. M., Foxall, W. & McEvilly, T. V. Clustering and periodic recurrence of microearthquakes on the San Andreas Fault at Parkfield, California. Science 267, 503–507 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Beroza, G. C., Cole, A. T. & Ellsworth, W. L. Stability of coda wave attenuation during the Loma Prieta, California, earthquake sequence. J. Geophys. Res. 100, 3977–3987 (1995).

    Article  ADS  Google Scholar 

  23. Dodge, D. A. & Beroza, G. C. Source array analysis of coda waves near the 1989 Loma Prieta, California, mainshock: Implications for the mechanism of coseismic velocity changes. J. Geophys. Res. 102, 24437–24458 (1997).

    Article  ADS  Google Scholar 

  24. Got, J-L. & Coutant, F. Anisotropic scattering and travel time delay analysis in Kilauea volcano, Hawaii, earthquake coda waves. J. Geophys. Res. 102, 8397–8410 (1997).

    Article  ADS  Google Scholar 

  25. Schaff, D. P., Beroza, G. C. & Shaw, B. E. Postseismic response of repeating aftershocks. Geophys. Res. Lett. 25, 4549–4552 (1998).

    Article  ADS  Google Scholar 

  26. Delaney, P. T., Miklius, A., Arnadottir, T., Okamura, A. T. & Sato, M. Motion of Kilauea Volcano during sustained eruption from the Puu'Oo and Kupaianaha vents, 1983–1991. J. Geophys. Res. 98, 17801–17820 (1993).

    Article  ADS  Google Scholar 

  27. Owen, S.et al. Rapid deformation of the south flank of Kilauea Volcano, Hawaii. Science 267, 1328–1332 ( 1995).

    Article  ADS  CAS  Google Scholar 

  28. Abers, G. A., Hu, X. & Sykes, L. R. Source scaling of earthquakes in the Shumagin region, Alaska: Time-domain inversions of regional waveforms. Geophys. J. Int. 123, 41–58 ( 1995).

    Article  ADS  Google Scholar 

  29. Power, W. L. & Tullis, T. E. The contact between opposing fault surfaces at Dixie Valley, Nevada, and implications for fault mechanics. J. Geophys. Res. 97, 15425–15436 (1992).

    Article  ADS  Google Scholar 

  30. Dieterich, J. H. Earthquake nucleation on faults with rate and state-dependent friction. Tectonophysics 211, 149–178 (1992).

    Article  Google Scholar 

  31. Dieterich, J. H. & Linker, M. F. Fault stability under conditions of variable normal stress. Geophys. Res. Lett. 19, 1691–1694 ( 1992).

    Article  ADS  Google Scholar 

  32. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643– 696 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Ellsworth, W. L. in Urban Disaster Mitigation (eds Cheng, F. Y. & Sheu, M.-S.) 1–14 (Elsevier, Tarrytown, New York, 1995).

    Book  Google Scholar 

  34. Beroza, G. & Zoback, M. L. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction. Science 259, 210–213 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Abercrombie, R. E. Earthquake source scaling relationships from −1 to 5 M Lusing seismograms recorded at 2.5-km depth. J. Geophys. Res. 100, 24015–24036 ( 1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Abercrombie for discussions, F. Waldhauser, W. L. Ellsworth and A.Cole for a preprint of their Hayward fault relocations, and F. A. Dahlen, J. Lees and P. Shearer for comments. The figures were produced using the GMT software provided by P. Wessel and W.Smith. This work was supported by the US NSF and the US Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan M. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, A., Gillard, D. & Got, JL. Streaks of microearthquakes along creeping faults. Nature 400, 635–641 (1999). https://doi.org/10.1038/23196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23196

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing