Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mesoscale approach to extinction risk in fragmented habitats

Abstract

Assessing the fate of species endangered by habitat fragmentation1,2,3 using spatially explicit and individual-based models4,5,6,7 can be cumbersome and requires detailed ecological information that is often unavailable. Conversely, Levins-like8 macroscale models9,10 neglect data on the distribution of local numbers, which are frequently collected by field ecologists11,12,13. Here we present an alternative, mesoscale approach for metapopulations that are subject to demographic stochasticity, environmental catastrophes and habitat loss. Starting from a model that accounts for discrete individuals in each patch and assumes a birth–death stochastic process with global dispersal14,15, we use a negative-binomial approximation16 to derive equations for the probability of patch occupancy and the mean and variance of abundance in each occupied patch17. A simple bifurcation analysis18 can be run to assess extinction risk. Comparison with both the original model and a spatially explicit model with local dispersal proves that our approximation is very satisfactory. We determine the sensitivity of metapopulation persistence to patch size, catastrophe frequency and habitat loss, and show that good dispersers are affected more by habitat destruction than by environmental disasters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Boundaries separating persistence from extinction in parameter space (D, r) without catastrophes or habitat destruction (m = 0, u = 1).
Figure 2: The influence of key ecological parameters on persistence–extinction boundaries (calculated by bifurcation analysis) for three-dimensional mesoscale models (negative binomial with varying clumping).
Figure 3: Summary of various contributions to metapopulation extinction in parameter space (D, r).

Similar content being viewed by others

References

  1. Bascompte, J. & Solé, R. V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65, 465–473 (1996).

    Article  Google Scholar 

  2. Hanski, I., Gilpin, M. (eds) Metapopulation Biology: Ecology, Genetics, and Evolution (Academic, San Diego, California, (1997).

    MATH  Google Scholar 

  3. Hanski, I. Metapopulation dynamics. Nature 396, 41–50 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Tilman, D. & Kareiva, P. Spatial Ecology (Princeton Univ. Press, New Jersey, (1997).

    Google Scholar 

  5. Bascompte, J. & Solé, R. V. Modeling Spatiotemporal Dynamics in Ecology (Springer, Berlin, (1998).

    Google Scholar 

  6. De Angelis, D. L. & Gross, L. J. (eds) Individual-Based Models and Approaches in Ecology (Chapman & Hall, New York, (1992).

    Book  Google Scholar 

  7. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992).

    Article  ADS  Google Scholar 

  8. Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).

    Google Scholar 

  9. Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138, 768–776 (1991).

    Article  Google Scholar 

  10. Day, J. R. & Possingham, H. P. Astochastic metapopulation model with variability in patch size and position. Theor. Popul. Biol. 48, 333–360 (1995).

    Article  Google Scholar 

  11. den Boer, P. J. Density limits and survival of local populations in 64 carabid species with different power of dispersal. J. Evol. Biol. 3, 19–48 (1990).

    Article  Google Scholar 

  12. Whitlock, M. C. Nonequilibrium population structure in forked fungus beetles: extinction, colonization and the genetic variance among populations. Am. Nat. 139, 952–970 (1992).

    Article  Google Scholar 

  13. Crawley, M. J. & Brown, S. L. Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc. R. Soc. Lond. B 259, 49–54 (1995).

    Article  ADS  Google Scholar 

  14. Chesson, P. L. Models for spatially distributed populations: The effect of within-patch variability. Theor. Popul. Biol. 19, 288–325 (1981).

    Article  Google Scholar 

  15. Drechsler, M. & Wissel, C. Separability of local and regional dynamics in metapopulations. Theor. Popul. Biol. 51, 9–21 (1997).

    Article  Google Scholar 

  16. Anderson, R. M. & May, R. M. Regulation and stability of host–parasite population interactions—I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).

    Article  Google Scholar 

  17. Bolker, B. M. & Pacala, S. W. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179–197 (1997).

    Article  CAS  Google Scholar 

  18. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, New York, (1995).

    Book  Google Scholar 

  19. Kareiva, P. & Wennergren, V. Connecting landscape patterns to ecosystem and population process. Nature 373, 299–302 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Olivieri, I., Michalakis, Y. & Gouyon, P. H. Metapopulation genetics and the evolution of dispersal. Am. Nat. 146, 202–228 (1995).

    Article  Google Scholar 

  21. Chesson, P. L. Persistence of a Markovian population in a patchy environment. Z. Wahrscheinlichkeitstheorie 66, 97–107 (1984).

    Article  MathSciNet  Google Scholar 

  22. Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    Article  Google Scholar 

  23. Chesson, P. L. in Modeling Spatiotemporal Dynamics in Ecology (eds Bascompte, J. & Solé, R. V.) (Springer, Berlin, (1998).

    Google Scholar 

  24. Wolfram, S. Cellular Automata and Complexity: Collected Papers (Addison-Wesley, Reading, Massachusetts, (1994).

    MATH  Google Scholar 

  25. Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–364 (1994).

    Article  Google Scholar 

  26. Tucker, G. M. & Heath, M. F. Birds in Europe. Their Conservation Status (Birdlife International, Cambridge, (1994).

    Google Scholar 

  27. Pugliese, A., Rosà, R. & Damaggio, M. L. Analysis of a model for macroparasitic infection with variable aggregation and clumped infections. J. Math. Biol. 36, 419–447 (1998).

    Article  MathSciNet  CAS  Google Scholar 

  28. Kendall, M. & Stuart, A. The Advanced Theory of Statistics (Griffin, London, (1977).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank G. De Leo, C. Dimou and I. Hanski for suggestions. We thank Politecnico di Milano for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino Gatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casagrandi, R., Gatto, M. A mesoscale approach to extinction risk in fragmented habitats. Nature 400, 560–562 (1999). https://doi.org/10.1038/23020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing