Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissociation of Haemoglobin Chesapeake into Subunits

Abstract

AMONG the large number of human haemoglobin variants of known structure, most are functionally normal. Haemoglobin Chesapeake (α2 92 Arg→Leu β2) is the first one found in association with elevated whole blood oxygen affinity and familial erythrocytosis. By contrast with haemoglobin A, isolated haemoglobin Chesapeake displays a six-fold increase in oxygen affinity and a marked reduction in haem–haem interaction (Hill's coefficient n=1.3), but a normal Bohr effect2. In the past two years, other variants with similar properties have been reported, but none has been studied as extensively as haemoglobin Chesapeake. These mutants provide considerable information relating the structure and function of haemoglobin, for their amino-acid substitutions are likely to be at sites crucial to the normal function of the molecule. It is of considerable interest that in four of these haemoglobins (Chesapeake, J-Capetown, Yakima and Kempsey), the substitutions are located in the area of contact between the α1 and β2 chains3. Three-dimensional models constructed from the X-ray crystallographic data of Perutz and associates indicate that, during oxygenation, there is considerable movement of the β chains relative to the α chains at this interface4. It is likely that the symmetrical dissociation of oxyhaemoglobin into αβ dimers also occurs at the α1β2 contact areas5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charache, S., Weatherall, D. J., and Clegg, J. B., J. Clin. Invest., 45, 813 (1966).

    Article  CAS  Google Scholar 

  2. Nagel, R. L., Gibson, Q. H., and Charache, S., Biochemistry, 6, 2395 (1967).

    Article  CAS  Google Scholar 

  3. Perutz, M. F., and Lehmann, H., Nature, 219, 902 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Muirhead, H., Cox, J. M., Mazzarella, L., and Perutz, M. F., J. Mol. Biol., 28, 117 (1967).

    Article  CAS  Google Scholar 

  5. Perutz, M. F., Muirhead, H., Cox, J. M., and Goaman, L. C. G., Nature, 219, 131 (1968).

    Article  ADS  CAS  Google Scholar 

  6. Rosemeyer, M. A., and Huehns, E. R., J. Mol. Biol., 25, 253 (1967).

    Article  CAS  Google Scholar 

  7. Bunn, H. F., J. Clin. Invest., 48, 126 (1969).

    Article  CAS  Google Scholar 

  8. Dalziel, K., and O'Brien, J. R., Biochem. J., 67, 119 (1957).

    Article  CAS  Google Scholar 

  9. Benesch, R. E., Benesch, R., and Williamson, M. E., Proc. US Nat. Acad. Sci., 48, 2071 (1962).

    Article  ADS  CAS  Google Scholar 

  10. Guidotti, G., J. Biol. Chem., 242, 3685 (1967).

    Article  CAS  Google Scholar 

  11. Edelstein, S., and Gibson, Q. H., in Heme and Hemoproteins, Proc. Fifth Colloq. Johnson Research Foundation Univ. Pennsylvania (in the press, 1969).

    Google Scholar 

  12. Yphantis, D. A., Biochemistry, 3, 297 (1964).

    Article  CAS  Google Scholar 

  13. Bucci, E., and Fronticelli, C., J. Biol. Chem., 240, PC 551 (1965).

    Article  Google Scholar 

  14. Wyman, J., Adv. Protein Chem., 19, 223 (1964).

    Article  CAS  Google Scholar 

  15. Guidotti, G., J. Biol. Chem., 242, 3704 (1967).

    Article  CAS  Google Scholar 

  16. Noble, R. W., J. Mol. Biol., 39, 479 (1969).

    Article  CAS  Google Scholar 

  17. Greer, J., Bunn, H. F., Ho, C., and Charache, S., Blood, 34, 838 (1969).

    Google Scholar 

  18. Ho, C., Davis, D. G., Mock, N. H., Lindstrom, T. R., and Charache, S., Biochem. Biophys. Res. Commun., 38, 779 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BUNN, H. Dissociation of Haemoglobin Chesapeake into Subunits. Nature 227, 839–840 (1970). https://doi.org/10.1038/227839a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/227839a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing