Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of cell movement is mediated by stretch-activated calcium channels

Abstract

Intracellular calcium regulates many of the molecular processes that are essential for cell movement1. It is required for the production of actomyosin-based contractile forces2,3,4, the regulation of the structure and dynamics of the actin cytoskeleton5,6, and the formation and disassembly of cell–substratum adhesions7,8. Calcium also serves as a second messenger in many biochemical signal-transduction pathways7. However, despite the pivotal role of calcium in motile processes, it is not clear how calcium regulates overall cell movement. Here we show that transient increases in intracellular calcium, [Ca2+]i, during the locomotion of fish epithelial keratocytes, occur more frequently in cells that become temporarily ‘stuck’ to the substratum or when subjected to mechanical stretching. We find that calcium transients arise from the activation of stretch-activated calcium channels, which triggers an influx of extracellular calcium. In addition, the subsequent increase in [Ca2+]i is involved in detachment of the rear cell margin. Thus, we have defined a mechanism by which cells can detect and transduce mechanical forces into biochemical signals that can modulate locomotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium transients occur in moving keratocytes.
Figure 2: Increases in [Ca2+]i in response to stretching.
Figure 3: Direct evidence for stretch-activated calcium channels.
Figure 4: A scheme for the mechano-chemical regulation of movement.

Similar content being viewed by others

References

  1. Stossel, TP. On the crawling of animal cells. Science 260, 1086–1094 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Strohmeier, R. & Bereiter-Hahn, J. Control of cell shape and locomotion by external calcium. Exp. Cell Res. 154, 412–420 (1984).

    Article  CAS  Google Scholar 

  3. Citi, S. & Kendrick-Jones, J. Regulations of non-muscle myosin structure and function. BioEssays 7, 155–159 (1987).

    Article  CAS  Google Scholar 

  4. Rees, D. A.et al. Myosin regulation and calcium transients in fibroblast shape change: Attachment and patching. Cell Motil. Cytoskel. 13, 112–122 (1989).

    Article  CAS  Google Scholar 

  5. Condeelis, J. Life at the leading edge: The formation of cell protrusions. Annu. Rev. Cell Biol. 9, 411–444 (1993).

    Article  CAS  Google Scholar 

  6. Hartwig, J. H. & Yin, H. The organization and regulation of the macrophage actin skeleton. Cell Motil. Cytoskel. 10, 117–125 (1988).

    Article  CAS  Google Scholar 

  7. Sjaastad, M. D. & Nelson, W. J. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. BioEssays 19, 47–55 (1997).

    Article  CAS  Google Scholar 

  8. Crowley, E. & Horwitz, A. F. Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions. J. Cell Biol. 131, 525–537 (1995).

    Article  CAS  Google Scholar 

  9. Lee, J. & Jacobson, K. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci. 110, 2833–2844 (1997).

    CAS  Google Scholar 

  10. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: Mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).

    Article  CAS  Google Scholar 

  11. Galbraith, CG. & Sheetz, M. P. Relationship between cell shape, traction force, and speed. Mol. Biol. Cell(suppl.) 8, 385 (1997).

    Google Scholar 

  12. Anderson, K. I., Wang, Y.-L. & Small, J. V. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J. Cell Biol. 134, 1209–1218 (1996).

    Article  CAS  Google Scholar 

  13. Lee, J., Leonard, M., Oliver, T., Ishihara, A. & Jacobson, K. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127, 1957–1964 (1994).

    Article  CAS  Google Scholar 

  14. Lee, J., Ishihara, A., Theriot, J. A. & Jacobson, K. Principles of locomotion for simple-shaped cells. Nature 362, 167–171 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Sachs, F. in Sensory Transduction (eds Corey, D P. & Roper, S.) 242–260 (Rockefeller University Press, New York, 1992).

    Google Scholar 

  17. Gustin, M. C., Zhou, X., Martinac, B. & Kung, C. Amechanosensitive ion channel in the yeast plasma membrane. Science 242, 762–765 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Hamill, O. P. & McBride, D. W. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl Acad. Sci. USA 89, 7462–7466 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Sackin, H. in Molecular Biology of Membrane Transport Disorders (ed. Schultz, S. G.) 201–222 (Plenum, New York, 1996).

    Book  Google Scholar 

  20. Kolega, J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J. Cell Biol. 102, 1400–1411 (1986).

    Article  CAS  Google Scholar 

  21. Pommerenke, H.et al. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur. J. Cell Biol. 70, 157–164 (1996).

    CAS  PubMed  Google Scholar 

  22. Glogauer, M., Ferrier, J. & McCulloch, C. A. G. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in human fibroblasts. Am. J. Physiol. 269, C1093–C1104 (1995).

    Article  CAS  Google Scholar 

  23. Naruse, K. & Sokabe, M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J. Physiol. 264, 1037–1044 (1993).

    Article  Google Scholar 

  24. Chen, W.-T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90, 187–200 (1981).

    Article  CAS  Google Scholar 

  25. Hendey, B., Klee, C. B. & Maxfield, F. R. Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258, 296–299 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Huttenlocher, A.et al. Regulation of cell migration by the calcium-dependent protease calpain. J. Biol. Chem. 272, 32719–32722 (1997).

    Article  CAS  Google Scholar 

  27. Palecek, S. P., Huttenlocher, A., Horwitz, A. F. & Lauffenburger, D. A. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci. 111, 929–940 (1998).

    CAS  Google Scholar 

  28. Brundage, R. A., Fogarty, K. E., Tuft, R. A. & Fay, F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Marks, P. W. & Maxfield, F. R. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J. Cell Biol. 110, 43–52 (1990).

    Article  CAS  Google Scholar 

  30. Ishihara, A., Gee, K., Schwartz, S., Jacobson, K. & Lee, J. Photoactivation of caged compounds in single, living cells: An application to the study of cell locomotion. Biotechniques 23, 268–274 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (K.J. and G.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliet Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Ishihara, A., Oxford, G. et al. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400, 382–386 (1999). https://doi.org/10.1038/22578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22578

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing