Seeing a single photon without destroying it

Abstract

Light detection is usually a destructive process, in that detectors annihilate photons and convert them into electrical signals, making it impossible to see a single photon twice. But this limitation is not fundamental—quantum non-demolition strategies1,2,3 permit repeated measurements of physically observable quantities, yielding identical results. For example, quantum non-demolition measurements of light intensity have been demonstrated4,5,6,7,8,9,10,11,12,13,14, suggesting possibilities for detecting weak forces and gravitational waves3. But such experiments, based on nonlinear optics, are sensitive only to macroscopic photon fluxes. The non-destructive measurement of a single photon requires an extremely strong matter–radiation coupling; this can be realized in cavity quantum electrodynamics15, where the strength of the interaction between an atom and a photon can overwhelm all dissipative couplings to the environment. Here we report a cavity quantum electrodynamics experiment in which we detect a single photon non-destructively. We use atomic interferometry to measure the phase shift in an atomic wavefunction, caused by a cycle of photon absorption and emission. Our method amounts to a restricted quantum non-demolition measurement which can be applied only to states containing one or zero photons. It may lead to quantum logic gates16 based on cavity quantum electrodynamics, and multi-atom entanglement17.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scheme of our atom interferometer, which can detect single photons.
Figure 2: Preparing and detecting one photon.
Figure 3: Measuring a photon twice.

References

  1. 1

    Braginsky, V. B. & Vorontsov, Y. I. Quantum mechanical limitations in macroscopic experiments and modern experimental techniques. Usp. Fiz. Nauk. 114, 41–53 (1974) [Sov. Phys. Usp. 17, 644–650 (1975]).

    Google Scholar 

  2. 2

    Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (ed. Thorne, K. S.) (Cambridge Univ. Press, (1992).

    Google Scholar 

  3. 3

    Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).

    ADS  Article  Google Scholar 

  4. 4

    Grangier, P., Levenson, A. L. & Poizat, J. P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Levenson, M. D., Shelby, R. M., Reid, M. & Walls, D. F. Quantum non-demolition detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476 (1986).

    ADS  CAS  Article  Google Scholar 

  6. 6

    La Porta, A., Slusher, R. E. & Yurke, B. Back-action evading measurements of an optical field using parametric down-conversion. Phys. Rev. Lett. 62, 28–31 (1989).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Friberg, S. R., Machida, S. & Yamamoto, Y. Quantum non-demolition measurement of the photon number of an optical soliton. Phys. Rev. Lett. 69, 3165–3168 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Roch, J. F., Roger, G., Grangier, P., Courty, J. M. & Reynaud, S. Quantum non-demolition measurements in optics: a review and some recent experimental results. Appl. Phys. B 55, 291–297 (1992).

    ADS  Article  Google Scholar 

  9. 9

    Poizat, J. P. & Grangier P. Experimental realisation of a quantum optical tap. Phys. Rev. Lett. 70, 271–274 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Back-action evading measurements for quantum non-demolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Quantum non-demolition measurements. Appl. Phys. B 64(suppl.), 123–272 (1997).

  12. 12

    Roch, J. F. et al. Quantum non-demolition measurements using cold atoms. Phys. Rev. Lett. 78, 634–637 (1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bencheick, K., Levenson, J. A., Grangier, P. & Lopez, O. Quantum non-demolition demonstration via repeated back-action evading measurements. Phys. Rev. Lett. 75, 3422–3425 (1995).

    ADS  Article  Google Scholar 

  14. 14

    Bruckmeier, R., Hansen, H. & Schiller, S. Repeated quantum non-demolition measurements of continuous optical waves. Phys. Rev. Lett. 79, 1463–1466 (1997).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Haroche, S. & Raimond, J. M. Cavity quantum electrodynamics. Sci. Am. 268, 54–62 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Barenco, A., Deutsch, D. & Ekert, A. Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Haroche, S. Atoms and photons in high Q cavities: new tests of quantum theory. Ann. NY Acad. Sci. 755, 73–86 (1995).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Rauch, H., Zeilinger, A., Badurek, G. & Wilfing, A. Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975).

    ADS  Article  Google Scholar 

  20. 20

    Werner, S. A., Colella, R., Overhauser, A. W. & Eagen, C. F. Observation of the phase shift of a neutron due to the precession in a magnetic field. Phys. Rev. Lett. 35, 1053–1055 (1975).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ramsey, N. F. Molecular Beams (Oxford Univ. Press, New York, (1985).

    Google Scholar 

  22. 22

    Brune, M., Haroche, S., Lefèvre, V., Raimond, J. M. & Zagury, N. Quantum non-demolition measurement of small photon numbers by Rydberg atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Brune, M., Haroche, S., Raimond, J. M., Davidovich, L. & Zagury, N. Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of Schrödinger cat states. Phys. Rev. A 45, 5193–5214 (1992).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bragingsky, V. B. & Khalili, F. Ya. Quantum non-demolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    ADS  Article  Google Scholar 

  25. 25

    Weidinger, M., Varcoe, B., Heerlein, R. & Walther, H. Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Brune, M. et al. Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77, 4887–4889 (1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Maître, X. et al. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997).

    ADS  Article  Google Scholar 

  29. 29

    Hulet, R. G. & Kleppner, D. Rydberg atoms in “circular” states. Phys. Rev. Lett. 51, 1430–1433 (1983).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Nussenzveig, P. et al. Preparation of high principal quantum numbers “circular” states of rubidium. Phys. Rev. A 48, 3991–3994 (1993).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Laboratoire Kastler Brossel is a Unité Mixte de Recherches of Ecole Normale Supérieure, Université P. et M. Curie, and Centre National de la Recherche Scientifique. This work was supported by the Commission of the European Community.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Haroche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nogues, G., Rauschenbeutel, A., Osnaghi, S. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999). https://doi.org/10.1038/22275

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing