Pairing in dense lithium

Abstract

The light alkali metals have played an important role in the developing understanding of the electronic structure of simple metals. These systems are commonly viewed in terms of an underlying interacting electron gas permeated by periodic arrays of ions normally occupying only a small fraction of the crystal volume. The electron–ion interaction, or equivalently the pseudopotential, has been argued to be weak in such systems, reflecting the partial cancellation of nuclear attraction by the largely repulsive effects of Pauli exclusion by the core electrons. Current experiments can now achieve densities at which the core electrons substantially overlap, significantly reducing the fractional volume available to fixed numbers of valence electrons. Here we report the results of first-principles calculations1,2 indicating that lithium, the band structure of which is largely free-electron-like at ordinary densities, does not follow the intuitive expectations of quantum mechanics by becoming even more free-electron-like at higher densities. Instead, at high pressure its electronic structure departs radically from nearly free-electron behaviour, and its common symmetric structure (body-centred cubic, b.c.c.) becomes unstable to a pairing of the ions. Once paired, lithium possesses an even number of electrons per primitive cell which, although not sufficient, is at least necessary for insulating (or semiconducting) behaviour within one-electron band theory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Enthalpy as a function of pressure for competitive structures of lithium.
Figure 2: Band structures of dense lithium (symmetry points as given in ref. 24).
Figure 3: Two f.c.c. cells can be continuously taken into a Cmca structure by a Peierls-type pairing distortion.
Figure 4: Band structure of f.c.c. lithium at rs = 2.0.
Figure 5: LDA 2 s charge density in the Cmca structure at rs = 2.0.

References

  1. 1

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, RC558–RC561 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Article  Google Scholar 

  6. 6

    Boettger, J. C. & Trickey, S. B. Equation of state and properties of lithium. Phys. Rev. B 32, 3391–3398 (1985).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Jaffe, J. E. et al. Gaussian-basis LDA and GGA calculations for alkali-metal equations of state. Phys. Rev. B 57, 11834–11837 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Overhauser, A. W. Crystal structure of lithium at 4.2 K. Phys. Rev. Lett. 53, 64–65 (1984).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Liu, A. Y. & Cohen, M. L. Electron-phonon coupling in bcc and 9R lithium. Phys. Rev. B 44, 9678–9684 (1991).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Needs, RJ., Martin, R. M. & Nielsen, O. H. Total-energy calculations of the structural properties of the group-V element arsenic. Phys. Rev. B 33, 3778–3784 (1986).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Johnson, K. A. & Ashcroft, N. W. Nature (submitted).

  13. 13

    Straus, D. M. & Ashcroft, N. W. Self-consistent structure of metallic hydrogen. Phys. Rev. Lett. 38, 415–418 (1977).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Natoli, V., Martin, R. M. & Ceperly, D. Crystal structure of molecular hydrogen at high pressure. Phys. Rev. Lett. 74, 1601–1604 (1984).

    ADS  Article  Google Scholar 

  15. 15

    Overhauser, A. W. Exchange and correlation instabilities of simple metals. Phys. Rev. 167, 691–698 (1968).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Richardson, C. F. & Ashcroft, N. W. High-temperature superconductivity in metallic hydrogen: electron-electron enhancements. Phys. Rev. Lett. 78, 118–121 (1997).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Siringo, F., Pucci, R. & Angilella, G. G. N. Are the light alkali metals still metals under high pressure? High Pressure Res. 15, 255–262 (1997).

    ADS  Article  Google Scholar 

  18. 18

    Moulopoulos, K. & Ashcroft, N. W. Scaling relations for two-component charged systems: Application to metallic hydrogen. Phys. Rev. B 41, 6500–6519 (1990).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Moulopoulos, K. & Ashcroft, N. W. Generalized Coulomb pairing in the condensed state. Phys. Rev. Lett. 66, 2915–2918 (1991).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Moulopoulos, K. & Ashcroft, N. W. Coulomb interactions and generalized pairing in condensed matter. Phys. Rev. B (in the press).

  21. 21

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lin, T. H. & Dunn, K. J. High-pressure and low-temperature study of electrical resistance of lithium. Phys. Rev. B 33, 807–811 (1986).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Cracknell, A. P. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (eds Hellwege, K.-H. & Olsen, J. L.) Group III, Vol. 13c, 451–462 (Springer, Berlin, (1984).

    Google Scholar 

  25. 25

    Sherrington, D. & Kohn, W. Frequency-dependent dielectric function of a zero-gap semiconductor. Phys. Rev. Lett. 21, 153–156 (1968).

    ADS  Article  Google Scholar 

  26. 26

    Zittel, W. G. et al. Band-reordering effects in the ultra-high-pressure equation of state of lithium. J. Phys. F 15, L247–L251 (1985).

    CAS  Article  Google Scholar 

  27. 27

    Boettger, J. C. & Albers, R. C. Structural phase stability in lithium to ultrahigh pressures. Phys. Rev. B 39, 3010–3014 (1989).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Cohen, M. H. Optical constants, heat capacity, and the Fermi surface. Phil. Mag. 3, 762–775 (1958).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. A. Johnson and M. P. Teter for discussions, and we thank G. Kresse, J.Furthmüller and J. Hafner for providing the VASP software. This work was supported by the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. W. Ashcroft.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neaton, J., Ashcroft, N. Pairing in dense lithium. Nature 400, 141–144 (1999). https://doi.org/10.1038/22067

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing