Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of two sources of carbon monoxide in comet Hale–Bopp

Abstract

The composition of ices in comets may reflect that of the molecular cloud in which the Sun formed, or it may show evidence of chemical processing in the pre-planetary accretion disk around the proto-Sun. As carbon monoxide (CO) is ubiquitous in molecular clouds1,2, its abundance with respect to water could help to determine the degree to which pre-cometary material was processed, although variations in CO abundance may also be influenced by the distance from the Sun at which comets formed3,4,5. Observations have not hitherto provided an unambiguous measure of CO in the cometary ice (native CO). Evidence for an extended source of CO associated with comet Halley was provided by the Giotto spacecraft6,7,8,9, but alternative interpretations exist10. Here we report observations of comet Hale–Bopp which show that about half of the CO in the comet comes directly from ice stored in the nucleus. The abundance of this CO with respect to water (12 per cent) is smaller than in quiescent regions of molecular clouds, but is consistent with that measured in proto-stellar envelopes11, suggesting that the ices underwent some processing before their inclusion into Hale–Bopp. The remaining CO arises in the coma, probably through thermal destruction of more complex molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSHELL spectrum of comet Hale–Bopp, obtained UT1997 May 01.
Figure 2: Spatial profiles of CO emission in comet Hale–Bopp.
Figure 3: Hale–Bopp production rate curves (Q -curves), showing the derived Q (molecules s−1) asa fun.
Figure 4: Heliocentric dependence of Q CO and Q H 2 O in comet Hale–Bopp.

Similar content being viewed by others

References

  1. Rank, D. M., Townes, C. H. & Welch, W. J. Interstellar molecules and dense clouds. Science 174, 1083–1101 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Turner, B. E. Recent progress in astrochemistry. Space Sci. Rev. 51, 235–337 (1989).

    Article  ADS  Google Scholar 

  3. Mumma, M. J. Organic volatiles in comets: Their relation to interstellar ices and solar nebula material. Astron. Soc. Pacif. Conf. Ser. 122, 369–396 (1997).

    ADS  CAS  Google Scholar 

  4. Mumma, M. J., Weissman, P. R. & Stern, S. A. in Protostars and Planets, III(eds Levy, E. H. & Lunine, J.I.) 1177–1252 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  5. Sandford, S. A. & Allamandola, L. J. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity. Icarus 76, 201–224 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Eberhardt, P. et al. . The CO and N2 abundance in comet P/Halley. Astron. Astrophys. 187, 481–484 (1987).

    ADS  CAS  Google Scholar 

  7. Huebner, W. F., Boice, D. C. & Sharp, C. M. Polyoxymethylene in comet Halley. Astrophys. J. 320, L149–L152 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Huntress, W. T., Allen, M. & Delitsky, M. Carbon suboxide in comet Halley? Nature 352, 316–318 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Meier, R., Eberhardt, P., Krankowsky, D. & Hodges, R. R. The extended formaldehyde source in comet P/Halley. Astron. Astrophys. 277, 677–690 (1993).

    ADS  CAS  Google Scholar 

  10. Greenberg, J. M. & Li, A. From interstellar dust to comets: the extended CO source in comet Halley. Astron. Astrophys. 332, 374–384 (1998).

    ADS  Google Scholar 

  11. Chiar, J. E. et al. . Processing of icy mantles in protostellar envelopes. Astrophys. J. 498, 716–727 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Biver, N. et al. . Substantial outgassing of CO from comet Hale–Bopp at large heliocentric distance. Nature 380, 137–139 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Biver, N. et al. . Evolution of the outgassing of comet Hale–Bopp (C/1995 O1) from radio observations. Science 275, 1915–1918 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Womack, M., Festou, M. C. & Stern, S. A. The heliocentric evolution of key species in the distantly-active comet C/1995 O1 (Hale–Bopp). Astron. J. 114, 2789–2795 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Greene, T. P., Tokunaga, A. T., Toomey, D. W. & Carr, J. S. CSHELL: A high spectral resolution 1–5 µm cryogenic echelle spectrograph for the IRTF. Proc. SPIE 1946, 311–324 (1993).

    ADS  Google Scholar 

  16. Dello Russo, N., DiSanti, M. A., Mumma, M. J., Magee-Sauer, K. & Rettig, T. W. Carbonyl sulfide in comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale–Bopp): Evidence for an extended source in Hale–Bopp. Icarus 135, 377–388 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Dello Russo, N. et al. . Direct detection of water in comet C/1995 O1 (Hale–Bopp). Icarus(submitted).

  18. Herzberg, G. Spectra of Diatomic Molecules(Van Nostrand Reinhold, New York, 1950).

    Google Scholar 

  19. Weaver, H. A. et al. . Infrared spectroscopy of comet Hale–Bopp. Earth Moon Planets(in the press).

  20. Lämmerzahl, P. et al. . Expansion velocity and temperatures of gas and ions measured in the coma of comet P/Halley. Astron. Astrophys. 187, 169–173 (1987).

    ADS  Google Scholar 

  21. Boice, D. C., Sablik, M. J. & Konno, I. Distributed coma sources and the CH4/CO ratio in Comet Halley. Geophys. Res. Lett. 17, 1813–1816 (1990).

    Article  ADS  Google Scholar 

  22. Crifo, J. F. Ageneral physicochemical model of the inner coma of active comets. 1. Implications of spatially distributed gas and dust production. Astrophys. J. 445, 470–488 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Xie, X. & Mumma, M. J. Monte Carlo simulation of cometary Atmospheres: Application to Comet P/Halley at the time of the Giotto Spacecraft encounter. II. Axisymmetric model. Astrophys. J. 464, 457–475 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Combi, M. R. Time-dependent gas kinetics in tenuous planetary atmospheres: The cometary coma. Icarus 123, 207–226 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Xie, X. & Mumma, M. J. The effect of electron collisions on rotational populations of cometary water. Astrophys. J. 386, 720–728 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Biver, N. et al. . Long term evolution of the outgassing of comet Hale–Bopp from radio observations. Earth Moon Planets(in the press).

  27. Kunde, V. G. & Maguire, W. C. Adirect integration transmittance model. J. Quant. Spectrosc. Rad. Transf. 14, 803–817 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Rothman, L. S. et al. . The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Rad. Transf. 48, 469–507 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Crovisier, J. Rotational and vibrational synthetic spectra of linear parent molecules in comets. Astron. Astrophys. Suppl. 68, 223–258 (1987).

    ADS  CAS  Google Scholar 

  30. Huebner, W. F., Keady, J. J. & Lyon, S. P. Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195, 1–294 (1992).

    Article  ADS  Google Scholar 

  31. Green, S. F., McDonnell, J. A. M., Pankiewicz, G. S. A. & Zarnecki, J. C. in 20th ESLAB Symposium on the Exploration of Halley's Comet Vol. 2, 81–86 (SP-250, ESA, 1986).

    Google Scholar 

  32. Jewitt, D. & Matthews, H. E. Particulate mass loss from comet Hale–Bopp. Astron. J. 117, 1056–1062 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported through the NASA Planetary Astronomy Program. We thank the staff of the NASA Infrared Telescope Facility for their support throughout our comet Hale–Bopp observing campaign. The IRTF is operated by the University of Hawaii under contract to NASA. We thank J. Crovisier for comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. DiSanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiSanti, M., Mumma, M., Russo, N. et al. Identification of two sources of carbon monoxide in comet Hale–Bopp. Nature 399, 662–665 (1999). https://doi.org/10.1038/21378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21378

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing