Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Auditory collusion and a coupled couple of outer hair cells

Abstract

The discrepancies between measured frequency responses of the basilar membrane in the inner ear and the frequency tuning found in psychophysical experiments led to Békésy's idea of lateral inhibition in the auditory nervous system1. We now know that basilar membrane tuning can account for neural tuning2, and that sharpening of the passive travelling wave depends on the mechanical activity of outer hair cells (OHCs)3, but the mechanism by which OHCs enhance tuning remains unclear. OHCs generate voltage-dependent length changes at acoustic rates4,5,6,7,8, which deform the cochlear partition9,10,11. Here we use an electrical correlate of OHC mechanical activity, the motility-related gating current, to investigate mechano-electrical interactions among adjacent OHCs. We show that the motility caused by voltage stimulation of one cell in a group evokes gating currents in adjacent OHCs. The resulting polarization in adjacent cells is opposite to that within the stimulated cell, which may be indicative of lateral inhibition. Also such interactions promote distortion and suppression in the electrical and, consequently, the mechanical activity of OHCs. Lateral interactions may provide a basis for enhanced frequency selectivity in the basilar membrane of mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adjacent OHCs are mechano-electrically coupled.
Figure 2: Both OHCs were voltage clamped to −80 mV, and OHC 1 was stepped to 70 mV (V c1).
Figure 3: Gating currents are a function of both OHCs' holding potential.
Figure 4: Both OHCs were voltage clamped to −40 mV and independently stimulated with pure sine-wave voltages.

Similar content being viewed by others

References

  1. von Békésy, G. Experiments in Hearing (McGraw-Hill, New York, (1960 ).

    Google Scholar 

  2. Narayan, S. S., Temchin, A. N., Recio, A. & Ruggero, M. A. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282, 1882– 1884 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Dallos, P. The active cochlea. J. Neurosci. 12, 4575 –4585 (1992).

    Article  CAS  Google Scholar 

  4. Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 227, 194–196 ( 1985).

    Article  ADS  CAS  Google Scholar 

  5. Santos-Sacchi, J. & Dilger, J. P. Whole cell currents and mechanical responses of isolated outer hair cells. Hear. Res. 35, 143–150 ( 1988).

    Article  CAS  Google Scholar 

  6. Santos-Sacchi, J. On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J. Neurosci. 12, 1906– 1916 (1992).

    Article  CAS  Google Scholar 

  7. Dallos, P. & Evans, B. N. High frequency motility of outer hair cells and the cochlear amplifier. Science 267, 2006–2009 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Gale, J. E. & Ashmore, J. F. An intrinsic frequency limit to the cochlea amplifier. Nature 389, 63 –66 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Xue, S., Mountain, D. C. & Hubbard, A. E. Electrically evoked basilar membrane motion. J. Acoust. Soc. Am. 97, 3030–3041 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Nuttall, A. L. & Ren, T. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hear. Res. 92, 170–177 ( 1995).

    Article  CAS  Google Scholar 

  11. Mammano, F. & Ashmore, J. F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365, 838–841 ( 1993).

    Article  ADS  CAS  Google Scholar 

  12. Ashmore, J. F. Forward and reverse transduction in the mammalian cochlea. Neurosci. Res. (suppl.) 12, 39–50 (1990).

    Google Scholar 

  13. Santos-Sacchi, J. Reversible inhibition of voltage dependent outer hair cell motility and capacitance. J.Neurosci. 11, 3096–3110 (1991).

    Article  CAS  Google Scholar 

  14. Iwasa, K. H. Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys. J. 65, 492–498 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Gale, J. E. & Ashmore, J. F. Charge displacement induced by rapid stretch in the basolateral membrane of the guinea-pig outer hair cell. Proc. R. Soc. Lond. B 255, 243– 249 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Kakehata, S. & Santos-Sacchi, J. Membrane tension directly shifts voltage dependence of outer hair cell motility and associated gating charge. Biophys. J. 68, 2190– 2197 (1995).

    Article  CAS  Google Scholar 

  17. Vater, M., Lenoir, M. & Pujol, R. Ultrastructure of the horseshoe bat's organ of Corti. II. Transmission electron microscopy. J. Comp. Neurol. 318, 380–391 (1992).

    Article  CAS  Google Scholar 

  18. Huang, G.-J. & Santos-Sacchi, J. Mapping the distribution of the outer hair cell motility voltage sensor by electrical amputation. Biophys. J. 65, 2228–2236 (1993).

    Article  CAS  Google Scholar 

  19. Huang, G.-J. & Santos-Sacchi, J. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. Proc. Natl Acad. Sci. USA 91, 12268– 12272 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Tunstall, M. J., Gale, J. E. & Ashmore, J. F. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea. J. Physiol. (Lond.) 485, 739–752 (1995).

    Article  CAS  Google Scholar 

  21. Kakehata, S. & Santos-Sacchi, J. Effects of lanthanides and salicylate on outer hair cell motility and associated gating charge. J. Acoust. Soc. Am. 41, 676–689 (1967).

    Article  Google Scholar 

  22. Goldstein, J. L. Auditory nonlinearity. J. Acoust. Soc. Am. 41, 676–689 (1967).

    Article  ADS  CAS  Google Scholar 

  23. Goldstein, J. L. & Kiang, N. Y. S. Neural correlates of the aural combination tone 2f1-f2. Proc. IEEE 56 , 981–992 (1968).

    Article  Google Scholar 

  24. Dallos, P. & Harris, D. in Psychophysics and Physiology of Hearing (eds Evans, E. F. & Wilson, J. P.) 147 (Academic, London, (1977).

    Google Scholar 

  25. Dallos, P., Harris, D. M., Relkin, E. & Cheatham, M. A. in Psychophysical Physiological and Behavioural Studies in Hearing (eds van den Brink, G. & Bilsen, F. A.) 242–249 (Delft Univ. Press, Holland, (1980).

    Book  Google Scholar 

  26. Jaramillo, F., Markin, V. S. & Hudspeth, A. J. Auditory illusions and the single hair cell. Nature 364, 527–529 ( 1993).

    Article  ADS  CAS  Google Scholar 

  27. Takahashi, S. & Santos-Sacchi, J. Distortion component analysis of outer hair cell motility-related gating charge. J. Membr. Biol. (in the press).

  28. Santos-Sacchi, J. Harmonics of outer hair cell motility. Biophys. J. 65, 2217–2227 (1993).

    Article  CAS  Google Scholar 

  29. Santos-Sacchi, J., Kakehata, S. & Takahashi, S. The outer hair cell membrane potential directly affects the voltage dependence of motility-related gating charge. J. Physiol. (Lond.) 510, 225–235 ( 1998).

    Article  CAS  Google Scholar 

  30. Bezanilla, F. & Armstrong, C. M. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70, 549–566 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Mazzucco for technical help. This work was supported by a grant from NINCDS to J.S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Santos-Sacchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HB., Santos-Sacchi, J. Auditory collusion and a coupled couple of outer hair cells. Nature 399, 359–362 (1999). https://doi.org/10.1038/20686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20686

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing