Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nanometre-sized hexahedral coordination capsule assembled from 24 components

Abstract

Molecular capsules consist of closed, hollow frameworks within which encapsulated molecules are isolated from interaction with external molecules1. In this environment, otherwise reactive molecules can be stabilized2,3,4,5. Although some molecular capsules have been prepared by conventional synthetic chemistry1, recent progress in non-covalent synthesis has allowed the creation of capsules held together by hydrogen bonds6,7,8,9. Here we report the use of transition-metal-based coordination chemistry10,11,12,13,14,15,16,17,18,19 to assemble a stable, nanometre-scale capsule from 24 small components: 18 metal ions and six triangular ligands. The capsule is roughly hexahedral and comprises six edge-sharing triangles with two metal ions on each edge. The internal space has a volume of 900 Å3 and is fully closed to all but very small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The 1H NMR spectrum of the product assembling from 1 and 2 (3.3 equiv.).
Figure 3: Chemical structure of 3.
Figure 4: Proposed intermediates in the assembly of 3.

Similar content being viewed by others

References

  1. Cram, D. J. & Cram, JM. Container Molecules and their Guests (Royal Society of Chemistry, Cambridge, UK, (1994).

    Google Scholar 

  2. Cram, D. J., Tanner, M. E. & Thomas, R. The taming of cyclobutadiene. Angew. Chem. Int. Edn Engl. 30, 1024–1027 (1991).

    Article  Google Scholar 

  3. Warmuth, R. o -Benzyne: strained alkyne or cumulene?—NMR characterization in a molecular container. Angew. Chem. Int. Edn Engl. 36, 1347–1350 (1997).

    Article  CAS  Google Scholar 

  4. Kang, J. & Rebek, J. J Acceleration of a Diels-Alder reaction by a self-assembled molecular capsule. Nature 385, 50–52 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Kang, J., Santamaría, J., Hilmersson, G. & Rebek, J. J Self-assembled molecular capsule catalyzes a Diels-Alder reaction. J. Am. Chem. Soc. 120, 7389–7390 (1998).

    Article  CAS  Google Scholar 

  6. Wyler, R., de Mendoza, J. & Rebek, J. J Asynthetic cavity assembles through self-complementary hydrogen bonds. Angew. Chem. Int. Edn Engl. 32, 1699–1701 (1993).

    Article  Google Scholar 

  7. Rebek, J. J Assembly and encapsulation with self-complementary molecules. Chem. Soc. Rev. 25, 255–264 (1996).

    Article  CAS  Google Scholar 

  8. Heinz, T., Rudlkevich, D. M. & Rebek, J. J Pairwise selection of guests in a cylindrical molecular capsule of nanometre dimensions. Nature 394, 764–766 (1998).

    Article  ADS  CAS  Google Scholar 

  9. MacGillivray, L. R. & Atwood, J. L. Achiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Saalfrank, R. W., Stark, A., Peters, K. & von Schnering, H. G. The first “adamantoid” alkaline earth metal chelate complex: synthesis, structure, and reactivity. Angew. Chem. Int. Edn Engl. 27, 851–853 (1988).

    Article  Google Scholar 

  11. Boxter, P., Lehn, J.-M., DeCian, A. & Fischer, J. Multicomponent self-assembly: spontaneous formation of a cylindrical complex from five ligands and six metal ions. Angew. Chem. Int. Edn Engl. 32, 69–72 (1993).

    Article  Google Scholar 

  12. Fujita, M.et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469– 471 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Beissel, T., Power, R. E. & Raymond, K. N. Symmetry-based metal complex cluster formation. Angew. Chem. Int. Edn Engl. 35, 1084– 1086 (1996).

    Article  CAS  Google Scholar 

  14. Hartshorn, C. M. & Steel, P. J. Self-assembly and X-ray structure of a ten-component, three-dimensional metallosupramolecular cage. Chem. Commun. 541–542 (1997).

  15. Ibukuro, F., Kusukawa, T. & Fujita, M. Athermally switchable molecular lock. Guest-templated synthesis of a kinetically stable nanosized cage. J. Am. Chem. Soc. 120, 8561–8562 ( 1998).

    Article  CAS  Google Scholar 

  16. Kusukawa, T. & Fujita, M. Encapsulation of large, neutral molecules in a self-assembled nanocage incorporating six palladium(II) ions. Angew. Chem. Int. Edn Engl. 37, 3142– 3144 (1998).

    Article  CAS  Google Scholar 

  17. Fujita, M. in Comprehensive Supramolecular Chemistry Vol. 9(eds Sauvage, J.-P. & Hosseini, M. W.) 253–282 (Pergamon, Oxford, (1996).

    Google Scholar 

  18. Stang, P. J. & Olenyuk, B. Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc. Chem. Res. 30, 502–518 (1997).

    Article  CAS  Google Scholar 

  19. Fujita, M. Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem. Soc. Rev. 27, 417– 425 (1998).

    Article  CAS  Google Scholar 

  20. Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)] 4(NO3)8, which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    Article  CAS  Google Scholar 

  21. Fujita, M. & Ogura, K. Supramolecular self-assembly of macrocycles, catenanes, and cages through coordination of pyridine-based ligands to transition metals. Bull. Chem. Soc. Jpn 69, 1471– 1482 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Biradha for part of the crystallographic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Fujita.

Supplementary information

Supplementary information 1 (DOC 40 kb)

Supplementary information 2 (DOC 38 kb)

Supplementary information page 3 (PDF 40 kb)

Supplementary information page 4 (PDF 49 kb)

Supplementary information page 5 (PDF 50 kb)

Supplementary information page 6 (PDF 36 kb)

Supplementary information page 7 (PDF 46 kb)

Supplementary information page 8 (PDF 39 kb)

Supplementary information page 9 (PDF 28 kb)

Supplementary information page 10 (PDF 16 kb)

Supplementary information page 11 (PDF 33 kb)

Supplementary information page 12 (PDF 25 kb)

Supplementary information page 13 (PDF 81 kb)

Supplementary information page 14 (PDF 47 kb)

Supplementary information page 15 (PDF 25 kb)

Supplementary information page 16 (PDF 41 kb)

Supplementary information page 17 (PDF 42 kb)

Supplementary information page 18 (PDF 27 kb)

Supplementary information page 19 (PDF 43 kb)

Supplementary information page 40 (PDF 11 kb)

Supplementary information page 41 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, N., Umemoto, K., Yamaguchi, K. et al. A nanometre-sized hexahedral coordination capsule assembled from 24 components . Nature 398, 794–796 (1999). https://doi.org/10.1038/19734

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19734

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing