Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A capsaicin-receptor homologue with a high threshold for noxious heat


Pain-producing heat is detected by several classes of nociceptive sensory neuron that differ in their thermal response thresholds1,2,3. The cloned capsaicin receptor, also known as the vanilloid receptor subtype 1 (VR1), is a heat-gated ion channel that has been proposed to mediate responses of small-diameter sensory neurons to moderate (43 °C) thermal stimuli4,5. VR1 is also activated by protons, indicating that it may participate in the detection of noxious thermal and chemical stimuli in vivo. Here we identify a structurally related receptor, VRL-1, that does not respond to capsaicin, acid or moderate heat. Instead, VRL-1 is activated by high temperatures, with a threshold of 52 °C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells. VRL-1 transcripts are not restricted to the sensory nervous system, indicating that this channel may be activated by stimuli other than heat. We propose that responses to noxious heat involve these related, but distinct, ion-channel subtypes that together detect a range of stimulus intensities.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Alignment of cDNA sequences of rat VRL-1, human VRL-1 and rat VR1.
Figure 2: VRL-1 is activated by heat, but not by vanilloids or protons.
Figure 3: VRL-1 exhibits a higher activation threshold than VR1.
Figure 4: VRL-1 is highly expressed in a subset of medium- to large-diameter sensory neurons.
Figure 5: VR1 and VRL-1 proteins show distinct expression patterns among DRG neurons of different size classes.


  1. Dubner, R., Price, D. D., Beitel, R. E. & Hu, J. W. in Pain in the Trigeminal Region (eds Anderson, D. J. & Matthews, B.) 57–66 (Elsevier, Amsterdam, (1977).

    Google Scholar 

  2. Campbell, J. N. & Meyer, R. A. in Spinal Afferent Processing (ed. Yaksh, T. L.) 59–81 (Plenum, New York, (1986).

    Book  Google Scholar 

  3. Leem, J. W., Willis, W. D. & Chung, J. M. Cutaneous sensory receptors in the rat foot. J. Neurophysiol. 69, 1684–1699 (1993).

    CAS  Article  Google Scholar 

  4. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    ADS  CAS  Article  Google Scholar 

  5. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    CAS  Article  Google Scholar 

  6. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    CAS  Article  Google Scholar 

  7. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671 (1996).

    CAS  Article  Google Scholar 

  8. Colbert, H. A., Smith, T. L. & Bargmann, C. I. Osm9, a novel protein with structural similarity to ion channels, is required for olfaction, mechanosensation and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997).

    CAS  Article  Google Scholar 

  9. Marsh, S. J., Stansfield, C. E., Brown, D. A., Davey, R. & McCarthy, D. The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23, 275–289 (1987).

    CAS  Article  Google Scholar 

  10. Bevan, S. & Szolcsanyi, J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol. Sci. 11, 330–333 (1990).

    CAS  Article  Google Scholar 

  11. Winter, J., Walpole, C. S., Bevan, S. & James, I. F. Characterization of resiniferatoxin binding and capsaicin sensitivity in adult rat dorsal root ganglia. Neuroscience 57, 747–757 (1993).

    CAS  Article  Google Scholar 

  12. Bevan, S. et al. Capsazepine: a competitive antagonist of the sensory neuron excitant capsaicin. Br. J. Pharmacol. 107, 544–552 (1992).

    CAS  Article  Google Scholar 

  13. Dray, A., Forbes, C. A. & Burgess, G. M. Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci. Lett. 110, 52–59 (1990).

    CAS  Article  Google Scholar 

  14. Reuss, H., Mojet, M. H. Chyb, S. & Hardie, R. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19, 1249–1259 (1997).

    CAS  Article  Google Scholar 

  15. Meyer, R. A., Campbell, J. N. & Raja, S. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 13–44 (Churchill Livingstone, Edinburgh, (1994).

    Google Scholar 

  16. Helliwell, R. J. A. et al. Capsaicin sensitivity is associated with the expression of vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci. Lett. 250, 177–180 (1998).

    CAS  Article  Google Scholar 

  17. Jancso, G., Kiraly, E. & Jancso-Gabor, A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons. Nature 270, 741–743 (1977).

    ADS  CAS  Article  Google Scholar 

  18. Wood, J. N. et al. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J. Neurosci. 8, 3208–3220 (1988).

    CAS  Article  Google Scholar 

  19. Snider, W. D. & MacMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    CAS  Article  Google Scholar 

  20. McCarthy, P. W. & Lawson, S. N. Differing action potential shapes in rat dorsal root ganglion neurones related to their substance P and calcitonin gene-related peptide immunoreactivity. J. Comp. Neurol. 388, 541–549 (1997).

    CAS  Article  Google Scholar 

  21. Lawson, S. N. & Waddell, P. J. The antibody RT97 distinguishes between sensory cell bodies with myelinated and unmyelinated peripheral processes in the rat. J. Physiol. 371, 59P (1985).

    Google Scholar 

  22. Wood, J. N. & Anderton, B. H. Monoclonal antibodies to mammalian neurofilaments. Biosci. Rep. 1, 263–268 (1981).

    CAS  Article  Google Scholar 

  23. Light, A. & Perl, E. R. Re-examination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of course and fine fibers. J. Comp. Neurol. 186, 117–132 (1979).

    CAS  Article  Google Scholar 

  24. Nagy, I. & Rang, H. Noxious heat activates all capsaicin-sensitive and also a subpopulation of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience 88, 995–997 (1999).

    CAS  Article  Google Scholar 

  25. Hardie, R. C. & Minke, B. Novel Ca2+ channels underlying transduction in Drosophila hotoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 16, 371–376 (1993).

    CAS  Article  Google Scholar 

  26. Scott, K. & Zucker, C. TRP, TRPL and trouble in photoreceptor cells. Curr. Opin. Neurobiol. 8, 383–388 (1998).

    CAS  Article  Google Scholar 

  27. Nathans, J. Molecular biology of visual pigments. Annu. Rev. Neurosci. 10, 163–194 (1987).

    CAS  Article  Google Scholar 

  28. Brake, A., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    ADS  CAS  Article  Google Scholar 

  29. Todd, A. J., Spike, R. C. & Polgar, E. Aquantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal cord dorsal horn. Neuroscience 85, 459–473 (1998).

    CAS  Article  Google Scholar 

  30. Reichling, D. B. & Levine, J. D. Heat transduction in rat sensory neurons by calcium-dependent activation of a cation channel. Proc. Natl Acad. Sci. USA 94, 7006–7011 (1997).

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Bland for assistance with immunolocalization; L. England, J. Onuffer and members of the Basbaum laboratory for advice regarding primary neuronal culture, immunolocalization, and affinity purification methods; and A. Basbaum, H. Chuang, L. England, H. Ingraham and S.Jordt for comments on the manuscript. M.J.C. is an American Cancer Society postdoctoral fellow and NARSAD young investigator; M.T. is a Comroe Fellow of the UCSF Cardiovascular Research Institute. This work was supported by grants from NIGMS and NIDR.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Julius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caterina, M., Rosen, T., Tominaga, M. et al. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing