Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Josephson-junction qubits with controlled couplings

Abstract

Quantum computers, if available, could perform certain tasks much more efficiently than classical computers by exploiting different physical principles1,2,3. A quantum computer would be comprised of coupled, two-state quantum systems or qubits, whose coherent time evolution must be controlled in a computation. Experimentally, trapped ions4,5, nuclear magnetic resonance6,7,8 in molecules, and quantum optical systems9 have been investigated for embodying quantum computation. But solid-state implementations10,11,12,13,14 would be more practical, particularly nanometre-scale electronic devices: these could be easily embedded in electronic circuitry and scaled up to provide the large numbers of qubits required for useful computations. Here we present a proposal for solid-state qubits that utilizes controllable, low-capacitance Josephson junctions. The design exploits coherent tunnelling of Cooper pairs in the superconducting state, while employing the control mechanisms of single-charge devices: single- and two-bit operations can be controlled by gate voltages. The advantages of using tunable Josephson couplings include the simplification of the operation and the reduction of errors associated with permanent couplings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Josephson junction qubits.
Figure 2: Spectrum of a superconducting electron box.
Figure 3: Design of a quantum computer.

Similar content being viewed by others

References

  1. Lloyd, S. Apotentially realizable quantum computer. Science 261 , 1569–1571 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Bennett, C. H. Quantum information and computation. Phys. Today 48(10) , 24–30 (1995).

    Article  ADS  Google Scholar 

  3. DiVincenzo, D. P. Quantum computation. Science 269, 255– 261 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  4. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091– 4094 (1995).

    Article  ADS  CAS  Google Scholar 

  5. King, B. E. et al. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 81, 1525–1528 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Chuang, I. L., Gershenfeld, N. A. & Kubinec, M. Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408– 3411 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Cory, D. G. et al. Experimental error correction. Phys. Rev. Lett. 81, 2152–2155 ( 1998).

    Article  ADS  CAS  Google Scholar 

  8. Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344– 346 (1998).

    Article  ADS  Google Scholar 

  9. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, W. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Shnirman, A., Schön, G. & Hermon, Z. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett. 79, 2371– 2374 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Averin, D. V. Adiabatic quantum computation with Cooper pairs. Solid State Commun. 105, 659–664 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scripta T 76, 165–170 (1998).

    Article  ADS  Google Scholar 

  13. Kane, B. E. Asilicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120– 126 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 ( 1995).

    Article  ADS  CAS  Google Scholar 

  16. Shnirman, A. & Schön, G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B 57, 15400–15407 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Rouse, R., Han, S. & Lukens, J. E. Observation of resonant tunneling between macroscopically distinct quantum levels. Phys. Rev. Lett. 75, 1614–1617 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Maassen v.d. Brink, A., Schön, G. & Geerligs, L. J. Combined single-electron and coherent-Cooper-pair tunneling in voltage-biased Josephson junctions. Phys. Rev. Lett. 67, 3030–3033 ( 1991).

    Article  ADS  Google Scholar 

  19. Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy level spitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328–2331 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, ( 1996).

    Google Scholar 

  21. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Weiss, U. Quantum Dissipative Systems (World Scientific, Singapore, ( 1993).

    Book  Google Scholar 

  23. Miquel, C., Paz, J. P. & Zurek, W. H. Quantum computation with phase drift errors. Phys. Rev. Lett. 78, 3971–3974 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Beth, M. Devoret, D. P. DiVincenzo, E. Knill, K. K. Likharev and J.E.Mooij for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Makhlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhlin, Y., Scöhn, G. & Shnirman, A. Josephson-junction qubits with controlled couplings. Nature 398, 305–307 (1999). https://doi.org/10.1038/18613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18613

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing