Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-centrosymmetric superlattices in block copolymer blends

Abstract

Materials with a macroscopic electric polarization display a variety of useful properties, such as piezo- and pyroelectricity and second-order nonlinear optical activity1. Macroscopic polarization results when dipolar molecules are orientated in the same direction, or when ions are organized in a non-centrosymmetric crystal structure2. Centrosymmetric molecules have no dipole moment and so cannot generate a macroscopic polarization. Non-centrosymmetry in amorphous materials can be engineered by depositing particular sequences of layers on top of each other, or by applying external fields (generally electric) to orientate the molecules3. Here we report the formation of a non-centrosymmetric structure in an amorphous material through spontaneous self-assembly. Block copolymers are known to form ordered structures at the microscale owing to segregation of the different blocks4, 5. We show that a mixture of a ternary triblock copolymer and a binary diblock copolymer will organize itself into a non-centrosymmetric layered structure in which the layers are occupied by different blocks. The structure is periodic with a length scale of around 60 nm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagram showing all possible lamellar morphologies of blends of ABC and ac block copolymers.
Figure 2: Transmission electron micrographs of various blend compositions.
Figure 3

References

  1. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media 2nd edn (Pergamon, Oxford, (1987).

    Google Scholar 

  2. Nye, J. F. Physical Properties of Crystals (Oxford Univ. Press, New York, (1960).

    Google Scholar 

  3. Yariv, A. Quantum Electronics 64 (Saunders College Publishing, Philadelphia, (1991).

    Google Scholar 

  4. Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Binder, K. Phase transitions in polymer blends and block copolymer melts: some recent developments. Adv. Polym. Sci. 112, 181–299 (1994).

    Article  CAS  Google Scholar 

  6. de Gennes, P. G. The Physics of Liquid Crystals (Oxford Univ. Press, (1973).

    Google Scholar 

  7. Jacobs, A. E., Goldner, G. & Mukamel, D. Modulated structures in tilted chiral smectic films. Phys. Rev. A 45, 5783–5788 (1992).

    Article  ADS  Google Scholar 

  8. Petschek, R. G. & Wiefling, K. M. Novel ferroelectric fluids. Phys. Rev. Lett. 59, 343–346 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Halperin, A. Rod-coil copolymers: their aggregation behavior. Macromolecules 23, 2724–2731 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Prost, J., Bruinsma, R. & Tournilhac, F. Theory of longitudinal ferroelectric smectics. J. Phys. II France 4, 169–187 (1994).

    Article  CAS  Google Scholar 

  11. Tournilhac, F., Blinov, L. M., Simon, J. & Yablonsky, S. V. Ferroelectric liquid crystals from achiral molecules. Nature 359, 621–623 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article  CAS  Google Scholar 

  13. Niori, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezone, H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem. 6, 1231–1233 (1996).

    Article  CAS  Google Scholar 

  14. Link, D. R. et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 278, 1924–1927 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Mogi, Y. et al. Molecular weight dependence of the lamellar domain spacing of ABC triblock copolymers and their chain conformations in lamellar domains. Macromolecules 26, 5169–5173 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Gido, S. P., Schwark, D. W., Thomas, E. L. & Goncalves, M. C. Observation of a non-constant mean curvature interface in an ABC triblock copolymer. Macromolecules 26, 2636–2640 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Stadler, R. et al. Morphology and thermodynamics of symmetric poly(A-block-B-block-C) triblock copolymers. Macromolecules 28, 3080–3097 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Breiner, U., Krappe, U. & Stadler, R. Evolution of the “knitting pattern” morphology in ABC triblock copolymers. Macromol. Rapid Commun. 17, 567–575 (1996).

    Article  CAS  Google Scholar 

  19. Breiner, U., Krappe, U., Abetz, V. & Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers. Macromol. Chem. Phys. 198, 1051–1083 (1997).

    Article  CAS  Google Scholar 

  20. Brinkmann, S., Stadler, R. & Thomas, E. L. New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer domains. Macromolecules 31, 6566–6572 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Krappe, U., Stadler, R. & Voigt-Martin, I.-G. Chiral assembly in amorphous ABC triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules 28, 4558–4561 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Auschra, C. & Stadler, R. Synthesis of block copolymers with poly(methyl methacrylate): P(B-b-MMA), P(EB-b-MMA), P(S-b-B-b-MMA). Polym. Bull. 30, 257–264 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.A. and L.L. thank C. Gay for discussions. L.L. thanks J. Prost and A. Halperin for discussions on longitudinal ferroelectric smectics. This work was supported by INTAS-RFBR, the Deutsche Forschungsgemeinschaft (DFG) and the Bayreuther Institut für Makromolekülforschung (BIMF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Abetz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldacker, T., Abetz, V., Stadler, R. et al. Non-centrosymmetric superlattices in block copolymer blends. Nature 398, 137–139 (1999). https://doi.org/10.1038/18191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing