Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly

Abstract

Block copolymer self-assembly is a powerful tool for two-dimensional nanofabrication; however, the extension of this self-assembly concept to complex three-dimensional network structures is limited. Here we report a simple method to experimentally generate three-dimensional layered mesh morphologies through intrinsic molecular confinement self-assembly. We designed triblock bottlebrush polymers with two Janus domains: one perpendicular and one parallel to the polymer backbone. The former enforces a lamellar superstructure that intrinsically confines the intralayer self-assembly of the latter, giving rise to a mesh-like monoclinic (54°) M15 network substructure with excellent long-range order, as well as a tetragonal (90°) T131 mesh. Numerical simulations show that the spatial constraints exerted on the polymer backbone drive the assembly of M15 and yield T131 in the strong segregation regime. This work demonstrates that intrinsic molecular confinement is a viable path to bottom-up assembly of new geometrical phases of soft matter, extending the capabilities of block copolymer nanofabrication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of multilayer nanomeshes based on intrinsic molecular confinement self-assembly of triblock JBBCPs.
Fig. 2: SEM imaging of the multilayer nanomesh structures.
Fig. 3: STEM imaging and tomography evidence for the M15 substructure.
Fig. 4: Comparison of the networks and phase diagrams between di- and triblock JBBCPs.

Similar content being viewed by others

Data availability

The raw data for STEM tomography and 3D reconstruction is provided in Supplementary Video 1. The LAMMPS input and output datasets are too large to be shared publicly but are available from the corresponding authors upon request. All other data needed to evaluate the conclusions of this study are available within the Article and its Supplementary Information.

Code availability

The code generated during this study is available via GitHub at https://github.com/Z-H-Sun/IMCmesh.

References

  1. Bates, F. S. & Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    CAS  Google Scholar 

  2. Hamley, I. W. Nanostructure fabrication using block copolymers. Nanotechnology 14, R39–R54 (2003).

    CAS  Google Scholar 

  3. Segalman, R. A. Patterning with block copolymer thin films. Mater. Sci. Eng. R Rep. 48, 191–226 (2005).

    Google Scholar 

  4. Bolton, J., Bailey, T. S. & Rzayev, J. Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. Nano Lett. 11, 998–1001 (2011).

    CAS  Google Scholar 

  5. Kawamoto, K. et al. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. J. Am. Chem. Soc. 138, 11501–11504 (2016).

    CAS  Google Scholar 

  6. Cheng, L.-C. et al. Imparting superhydrophobicity with a hierarchical block copolymer coating. Small 16, 1905509 (2020).

    CAS  Google Scholar 

  7. Tavakkoli, K. G. et al. Multilayer block copolymer meshes by orthogonal self-assembly. Nat. Commun. 7, 10518 (2016).

    Google Scholar 

  8. Tavakkoli, K. G. et al. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336, 1294–1298 (2012).

    CAS  Google Scholar 

  9. Zhang, L. et al. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nanotechnol. 11, 900–906 (2016).

    CAS  Google Scholar 

  10. Bai, X. et al. Room-temperature processing of silver submicron fiber mesh for flexible electronics. npj Flex. Electron. 2, 3 (2018).

    Google Scholar 

  11. Kim, S. Y. et al. Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett. 14, 5698–5705 (2014).

    CAS  Google Scholar 

  12. Majewski, P. W., Rahman, A., Black, C. T. & Yager, K. G. Arbitrary lattice symmetries via block copolymer nanomeshes. Nat. Commun. 6, 7448 (2015).

    Google Scholar 

  13. Liu, R., Huang, H., Sun, Z., Alexander-Katz, A. & Ross, C. A. Metallic nanomeshes fabricated by multimechanism directed self-assembly. ACS Nano 15, 16266–16276 (2021).

    CAS  Google Scholar 

  14. Cha, S. K. et al. Nanopatterns with a square symmetry from an orthogonal lamellar assembly of block copolymers. ACS Appl. Mater. Interfaces 11, 20265–20271 (2019).

    CAS  Google Scholar 

  15. Subramanian, A., Tiwale, N., Doerk, G., Kisslinger, K. & Nam, C.-Y. Enhanced hybridization and nanopatterning via heated liquid-phase infiltration into self-assembled block copolymer thin films. ACS Appl. Mater. Interfaces 12, 1444–1453 (2020).

    CAS  Google Scholar 

  16. Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 5, 5387 (2014).

    CAS  Google Scholar 

  17. Chu, C. Y. et al. Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer. Soft Matter 11, 1871–1876 (2015).

    CAS  Google Scholar 

  18. Chang, C.-Y. et al. Mesoscale networks and corresponding transitions from self-assembly of block copolymers. Proc. Natl Acad. Sci. USA 118, e2022275118 (2021).

    CAS  Google Scholar 

  19. Bailey, T. S., Hardy, C. M., Epps, T. H. & Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 35, 7007–7017 (2002).

    CAS  Google Scholar 

  20. Takenaka, M. et al. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 40, 4399–4402 (2007).

    CAS  Google Scholar 

  21. Epps, T. H. et al. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37, 8325–8341 (2004).

    CAS  Google Scholar 

  22. Tyler, C. A. & Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94, 208302 (2005).

    Google Scholar 

  23. Meuler, A. J., Hillmyer, M. A. & Bates, F. S. Ordered network mesostructures in block polymer materials. Macromolecules 42, 7221–7250 (2009).

    CAS  Google Scholar 

  24. Bluemle, M. J., Fleury, G., Lodge, T. P. & Bates, F. S. The O52 network by molecular design: CECD tetrablock terpolymers. Soft Matter 5, 1587–1590 (2009).

    CAS  Google Scholar 

  25. Ding, Y. et al. Emergent symmetries in block copolymer epitaxy. Nat. Commun. 10, 2974 (2019).

    Google Scholar 

  26. Zheng, W. & Wang, Z.-G. Morphology of ABC triblock copolymers. Macromolecules 28, 7215–7223 (1995).

    CAS  Google Scholar 

  27. Mogi, Y. et al. Superlattice structures in morphologies of the ABC triblock copolymers. Macromolecules 27, 6755–6760 (1994).

    CAS  Google Scholar 

  28. Guo, Z.-H. et al. Janus graft block copolymers: design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed. 57, 8493–8497 (2018).

    CAS  Google Scholar 

  29. Liang, R. et al. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nat. Mater. 21, 1434–1440 (2022).

  30. Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015).

    CAS  Google Scholar 

  31. Li, K. et al. High speed e-beam writing for large area photonic nanostructures—a choice of parameters. Sci. Rep. 6, 32945 (2016).

    CAS  Google Scholar 

  32. Sinturel, C., Bates, F. S. & Hillmyer, M. A. High χ–low N block polymers: how far can we go? ACS Macro Lett. 4, 1044–1050 (2015).

    CAS  Google Scholar 

  33. Jung, Y. S. & Ross, C. A. Orientation-controlled self-assembled nanolithography using a polystyrene−polydimethylsiloxane block copolymer. Nano Lett. 7, 2046–2050 (2007).

    CAS  Google Scholar 

  34. Gu, W., Hong, S. W. & Russell, T. P. Orienting block copolymer microdomains with block copolymer brushes. ACS Nano 6, 10250–10257 (2012).

    CAS  Google Scholar 

  35. Gotrik, K. W. et al. Morphology control in block copolymer films using mixed solvent vapors. ACS Nano 6, 8052–8059 (2012).

    CAS  Google Scholar 

  36. Gu, X., Gunkel, I., Hexemer, A., Gu, W. & Russell, T. P. An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. Adv. Mater. 26, 273–281 (2014).

    CAS  Google Scholar 

  37. Lee, S. et al. Resolving triblock terpolymer morphologies by vapor-phase infiltration. Chem. Mater. 32, 5309–5316 (2020).

    CAS  Google Scholar 

  38. Son, J. G., Gotrik, K. W. & Ross, C. A. High-aspect-ratio perpendicular orientation of PS-b-PDMS thin films under solvent annealing. ACS Macro Lett. 1, 1279–1284 (2012).

    CAS  Google Scholar 

  39. Gotrik, K. W. et al. 3D TEM tomography of templated bilayer films of block copolymers. Adv. Funct. Mater. 24, 7689–7697 (2014).

    CAS  Google Scholar 

  40. Huang, H. & Alexander-Katz, A. Dissipative particle dynamics for directed self-assembly of block copolymers. J. Chem. Phys. 151, 154905 (2019).

    Google Scholar 

  41. Martínez-Veracoechea, F. J. & Escobedo, F. A. Simulation of the gyroid phase in off-lattice models of pure diblock copolymer melts. J. Chem. Phys. 125, 104907 (2006).

    Google Scholar 

  42. Hannon, A. F., Bai, W., Alexander-Katz, A. & Ross, C. A. Simulation methods for solvent vapor annealing of block copolymer thin films. Soft Matter 11, 3794–3805 (2015).

    CAS  Google Scholar 

  43. Vohidov, F. et al. ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. Chem. Sci. 11, 5974–5986 (2020).

    CAS  Google Scholar 

  44. Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    CAS  Google Scholar 

  45. Edwards, E. W., Montague, M. F., Solak, H. H., Hawker, C. J. & Nealey, P. F. Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates. Adv. Mater. 16, 1315–1319 (2004).

    CAS  Google Scholar 

  46. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).

    CAS  Google Scholar 

  47. Brown, W. M., Wang, P., Plimpton, S. J. & Tharrington, A. N. Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182, 898–911 (2011).

    CAS  Google Scholar 

  48. Hoogerbrugge, P. J. & Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992).

    Google Scholar 

Download references

Acknowledgements

J.A.J. acknowledges support from Eni S.p.A. through the MIT Energy Initiative. C.A.R. and A.A.-K. acknowledge support from NSF DMREF award 2118678. M.Z. acknowledges support from the NSF DMR award 2003875. This work was carried out in part through the use of MIT.nano’s facilities and APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (contract no. DE-AC02-06CH11357). The shared facilities of CMSE, NSL and MRSEC under award DMR1419807 were used. We acknowledge the MIT Satori, the MIT SuperCloud, MIT Research Computing Project and Lincoln Laboratory Supercomputing Center for providing the high-performance computing resources that have contributed to the research results reported here. We thank E. Cho and A. Penn for help with STEM imaging and Y. Ouyang for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., K.K. and B.L. synthesized the JBBCPs. Z.S., R. Liu and T.S. prepared the samples. Z.S., R. Liu, T.S. and R. Liang conducted the structure and property characterization. Z.S., R. Liu, H.H. and A.A.-K. conducted the simulations. Z.S., R. Liu, M.Z., C.A.R. and J.A.J. conceived the idea. Z.S., C.A.R. and J.A.J. wrote the manuscript.

Corresponding authors

Correspondence to Caroline A. Ross or Jeremiah A. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Maria Sammalkorpi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56, Tables 1 and 2, text and materials and methods.

Supplementary Video 1

STEM tomography raw data (tilt series) and depth-slice stack of the reconstructed tomogram.

Supplementary Video 2

Volume rendering of the 3D tomography reconstruction for the M15 substructure and its comparison with the mathematical model.

Supplementary Data 1

The 3D structures for the ball-and-stick model and math model within a unit cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Liu, R., Su, T. et al. Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly. Nat. Nanotechnol. 18, 273–280 (2023). https://doi.org/10.1038/s41565-022-01293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01293-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing