Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of mat-forming diatoms in the formation of Mediterranean sapropels

An Erratum to this article was published on 06 May 1999

Abstract

The origins of sapropels (sedimentary layers rich in organic carbon) are unclear, yet they may be a key to understanding the influence of climate on ocean eutrophication, the mechanisms of sustaining biological production in stratified waters and the genesis of petroleum source rocks1,2,3. Recent microfossil studies of foraminifera1 and calcareous nannofossils2 have focused attention on a deep chlorophyll maximum as a locus for the high production inferred3 for sapropel formation, but have not identified the agent responsible. Here we report the results of a high-resolution, electron-microscope-based study of a late Quaternary laminated sapropel in which the annual flux cycle has been preserved. We find that much of the production was by diatoms, both mat-forming and other colonial forms, adapted to exploit a deep nutrient supply trapped below surface waters in a stratified water column. Reconstructed organic-carbon and opal fluxes to the sediments are comparable to those at high-productivity sites in today's oceans, and calculations based on diatom Si/C ratios suggest that the high organic-carbon content of sapropels may be entirely accounted for by sedimenting diatoms. We propose that this style of production may have been common in ancient Palaeogene and Cretaceous seas, environments for which conventional appeals to upwelling-driven production to account for the occurrence of diatomites, and some organic-carbon-rich sediments, have never seemed wholly appropriate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary map of the eastern Mediterranean.
Figure 2: Composition of the laminated sapropel.
Figure 3: Annual cycle of production and flux forming sapropel S5.

Similar content being viewed by others

References

  1. Rohling, E. J. Review and new aspects concerning formation of the Mediterranean sapropels. Mar. Geol. 122, 1–28 (1994).

    Article  ADS  Google Scholar 

  2. Castradori, D. Calcareous nannofossils and the origin of eastern Mediterranean sapropels. Paleoceanography 8, 459–471 (1993).

    Article  ADS  Google Scholar 

  3. Calvert, S. E., Nielsen, B. & Fontugne, M. R. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359, 223–225 (1992).

    Article  ADS  CAS  Google Scholar 

  4. De Lange, G. J.et al. Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar. Chem. 31, 63–88 (1990).

    Article  CAS  Google Scholar 

  5. Villareal, T. A., Altabet, M. A. & Culver-Rymsza, K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709–712 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Yoder, J. A., Ackleson, S., Barber, R. T., Flamant, P. & Balch, W. A. Aline in the Sea. Nature 371, 689–692 (1994).

    Article  ADS  Google Scholar 

  7. Kemp, A. E. S. & Baldauf, J. G. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature 362, 141–143 (1993).

    Article  ADS  Google Scholar 

  8. Pearce, R. B.et al. Alamina-scale, SEM-based study of a diatom-ooze sapropel from the Eastern Mediterranean (ODP Leg 160). Proc. ODP Sci. Res. 160, 333–348 (1998).

    Google Scholar 

  9. Kemp, A. E. S., Pearce, R. B., Pike, J. & Marshall, J. E. A. Microfabric and microcompositional studies of Pliocene and Quaternary sapropels from the eastern Mediterranean. Proc. ODP Sci. Res. 160, 349–364 (1998).

    Google Scholar 

  10. Schrader, H. J. & Matherne, A. Sapropel formation in the eastern Mediterranean sea: evidence from preserved opal assemblages. Micropaleontology 27, 191–203 (1981).

    Article  Google Scholar 

  11. Pagou, K. & Gotsis-Skretas, O. Acomparative study of phytoplankton in S. Aegean, Levantine and Ionian Seas during March–April. Thalassographica 13, 13–18 (1990).

    Google Scholar 

  12. Ignatiades, L., Georgopoulos, D. & Karydis, M. Description of the phytoplanktonic community of the oligotrophic waters of the SE Aegean Sea (Mediterranean). Mar. Ecol. 16, 13–26 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Res. 36, 159–171 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Grimm, K. A., Lange, C. B. & Gill, A. S. Self-sedimentation of phytoplankton blooms in the geologic record. Sedim. Geol. 100, 151–161 (1997).

    Article  ADS  Google Scholar 

  15. Guillard, R. R. L. & Kilham, P. in The Biology of Diatoms (ed. Werner, D.) 372–469 (Botanical Monogr. 13, Univ. California Press, Berkeley, (1977)).

    Google Scholar 

  16. Villareal, T. A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Mar. Ecol. Prog. Ser. 76, 201–204 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Goldman, J. C. Potential role of large oceanic diatoms in new primary production. Deep-Sea Res. I 40, 159–168 (1993).

    Article  Google Scholar 

  18. Smith, C. R.et al. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Deep-Sea Res. II 43, 1309–1338 (1996).

    Article  ADS  Google Scholar 

  19. Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of Rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).

    Article  ADS  Google Scholar 

  20. Thunell, R., Pride, C., Tappa, E. & Muller-Karger, F. Varve formation in the Gulf of California: Insights from time series sediment trap sampling and remote sensing. Quat. Sci. Rev. 12, 451–464 (1993).

    Article  ADS  Google Scholar 

  21. Sancetta, C. Diatoms in the Gulf of California: Seasonal flux patterns and the sediment record for the last 15, 000 years. Paleoceanography 10, 67–84 (1995).

    Article  ADS  Google Scholar 

  22. Pike, J. & Kemp, A. E. S. Early Holocene decadal-scale ocean variability recorded in Gulf of California laminated sediments. Paleoceanography 12, 227–238 (1997).

    Article  ADS  Google Scholar 

  23. Richardson, T. L., Ciotti, A. M., Cullen, J. J. & Villareal, T. A. Physiological and optical properties of Rhizosolenia formosa (Bacillariophyceae) in the context of open-ocean vertical migration. J. Phycol. 32, 741–757 (1996).

    Article  Google Scholar 

  24. Sancetta, C. Mediterranean sapropels: Seasonal stratification yields high production and carbon flux. Paleoceanography 9, 195–196 (1994).

    Article  ADS  Google Scholar 

  25. Rossignol-Strick, M., Nesteroff, V., Olive, P. & Vergnaud-Grazzini, C. After the deluge; Mediterranean stagnation and sapropel formation. Nature 295, 105–110 (1982).

    Article  ADS  Google Scholar 

  26. Van Os, B. J. H., Lourens, L. J., Hilgen, F. J., De Lange, G. J. & Beaufort, L. The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: diagenesis, dilution and productivity. Paleoceanography 9, 601–617 (1994).

    Article  ADS  Google Scholar 

  27. Tang, C. M. & Stott, L. D. Seasonal salinity changes during Mediterranean sapropel deposition 9, 000 years B.P.: evidence from isotopic analyses of individual planktonic forminifera. Palaeoceanography 8, 473–493 (1993).

    Article  ADS  Google Scholar 

  28. Brzezinski, M. A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    Article  CAS  Google Scholar 

  29. Arthur, M. A.et al. Varve calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea. Glob. Biogeochem. Cycles 8, 195–217 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Dell'Agnese, D. J. & Clark, D. L. Siliceous microfossils from the warm late Cretaceous and early Cenozoic Arctic Ocean. J. Paleontol. 68, 31–47 (1994).

    Article  Google Scholar 

  31. Jacobs, D. K. & Sahagian, D. L. in Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Forcing (ed. Haq, B. U.) 329–366 (Kluwer, Dordrecht, (1995)).

    Book  Google Scholar 

  32. Mortlock, R. A. & Froelich, P. N. Asimple method for the rapid determination of biogenic opal in marine sediments. Deep-Sea Res. 36, 1415–1426 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the NERC ODP research grant and research fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. S. Kemp.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, A., Pearce, R., Koizumi, I. et al. The role of mat-forming diatoms in the formation of Mediterranean sapropels. Nature 398, 57–61 (1999). https://doi.org/10.1038/18001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18001

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing