Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voluminous volcanism on early Mars revealed in Valles Marineris

Abstract

The relative rates and importance of impact cratering, volcanism, erosion, and the deposition of sediments to the early geological history of Mars are poorly known. That history is recorded in the upper crust of the planet, which is best exposed along the 4,000-km-long canyon system called Valles Marineris. Previous studies of the stratigraphy of this region have assumed that it consists of megabreccia and fractured bedrock resulting from impacts, overlain by or interbedded with relatively thin layers of lava, and with the layering restricted to the uppermost level of the crust1,2,3,4,5,6. Here we report new high-resolution images that reveal ubiquitous horizontal layering to depths of at least 8 km in the canyons. Megabreccia should be only coarsely layered and fractured bedrock should be unlayered, so these observations indicate that volcanic or sedimentary processes were much more important in early martian history than previously believed. Morphological and compositional data suggest that the layers were formed mainly by volcanic flood lavas. Mars was therefore probably very volcanically active during at least the first billion years and after the period when the heaviest impact bombardment had ended.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Portions of MOC images of wall rock in Valles Marineris.
Figure 2: Portion of MOC image no.7906.
Figure 3: Aerial photograph of part of the Columbia River Basalt group in the northwestern USA; inset is an enlargement to show the morphology of the layers.

Similar content being viewed by others

References

  1. Lucchitta, B. K. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. M. & Matthews, M. S.) 453–492 (Univ. Arizona Press, Tucson, (1992)).

    Google Scholar 

  2. Tanaka, K. L., Scott, D. H. & Greeley, R. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. M. & Matthews, M. S.) 345–382 (Univ. Arizona Press, Tucson, (1992)).

    Google Scholar 

  3. Clifford, S. M. Amodel for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 98, 10973–11016 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Tanaka, K. L. & Golombek, M. P. Martian tension fractures and the formation of graben and collapse features at Valles Marineris. Proc. Lunar Planet. Sci. Conf. 19, 383–396 (1989).

    ADS  Google Scholar 

  5. Davis, P. A. & Golombek, M. P. Discontinuities in the shallow Martian crust at Lunae, Syria, and Sinai Plana. J. Geophys. Res. 95, 14231–14248 (1990).

    Article  ADS  Google Scholar 

  6. Zuber, M. T. & Aist, L. L. The shallow structure of the Martian lithosphere in the vicinity of the ridged plains. J. Geophys. Res. 95, 14215–14230 (1990).

    Article  ADS  Google Scholar 

  7. Malin, M. C. et al. Mars Observer Camera. J. Geophys. Res. 97, 7699–7718 (1992).

    Article  ADS  Google Scholar 

  8. Malin, M. C. et al. Early views of the Martian surface from the Mars Orbital Camera of Mars Global Surveyor. Science 279, 1681–1685 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Albee, A. L., Palluconi, F. D. & Arvidson, R. E. Mars Global Surveyor mission: Overview and status. Science 279, 1671–1672 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Lucchitta, B. K. Morphology of chasma walls, Mars. J. Res. US Geol. Surv. 6, 651–662 (1978).

    Google Scholar 

  11. Geissler, P. E., Singer, R. B. & Lucchitta, B. K. Dark materials in Valles Marineris: Indications of the style of volcanism and magmatism on Mars. J. Geophys. Res. 95, 14399–14413 (1990).

    Article  ADS  Google Scholar 

  12. Scott, D. H. & Tanaka, K. L. Geologic Map of the Western Equatorial Region of Mars, Scale 1:15,000,000 (Misc. Inv. Ser. Map I-1802-A, US Geol. Surv., Denver, (1986)).

    Google Scholar 

  13. Witbeck, N. E., Tanaka, K. E. & Scott, D. H. Geologic Map of the Valles Marineris Region of Mars, Scale 1:2,000,000 (Inv. Ser. Map I-2010, US Geol. Surv., Denver, (1991)).

    Google Scholar 

  14. Erard, S. et al. Spatial variations in composition of the Valles Marineris and Isidis Planitia regions of Mars derived from ISM data. Proc. Lunar Planet. Sci. Conf. 21, 437–456 (1991).

    ADS  Google Scholar 

  15. Self, S., Thordarson, T. & Keszthelyi, L. in Large Igneous Provinces (eds Mahoney, J. J. & Coffin, M. F.) 381–410 (Am. Geophys. Union, Washington, D. C., (1997)).

    Google Scholar 

  16. Christensen, P. R. et al. Results from the Mars Global Surveyor thermal Emission Spectrometer. Science 279, 1692–1698 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J. & Sleep, N. H. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. M. & Matthews, M. S.) 147–183 (Univ. Arizona Press, Tucson, (1992)).

    Google Scholar 

  18. Carr, M. H. Water on Mars (Oxford Univ. Press, New York, (1996)).

    Google Scholar 

  19. Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102, 13321–13340 (1997).

    Article  ADS  Google Scholar 

  20. Greeley, r. & Schneid, B. D. Magma generation on Mars: Amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Carr, M. H. Recharge of the early atmosphere of Mars by impact-induced release of CO2. Icarus 79, 311–327 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Maher, K. A. & Stevenson, D. J. Impact frustration of the origin of life. Nature 331, 612–614 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Topographic Maps of the Polar, Western, and Eastern regions of Mars (Misc. Inv. Ser. Map I-2160, US Geol. Surv., Denver, (1991)).

  25. Fanale, F. P. Martian volatiles: Their degassing history and geochemical fate. Icarus 28, 179–202 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Soderblom, L. A. & Wenner, D. B. Possible fossil water liquid–ice interfaces in the Martian crust. Icarus 34, 622–637 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Treiman, A. H., Fuks, K. H. & Murchie, S. Diagenetic layers in the upper walls of Valles Marineris, Mars: Evidence for drastic climate change since the mid-Hesperian. J. Geophys. Res. 100, 26339–26344 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Keszthelyi for discussions, and M. T. Zuber and N. G. Barlow for comments on the manuscript. This work was supported by the MGS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred S. McEwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, A., Malin, M., Carr, M. et al. Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999). https://doi.org/10.1038/17539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing