Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Negative regulation of MEKK1/2 signaling by Serine-Threonine kinase 38 (STK38)

Abstract

Mitogen-activated protein kinases (MAPKs) are activated through the kinase cascades of MAPK, MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK). MAPKKKs phosphorylate and activate their downstream MAPKKs, which in turn phosphorylate and activate their downstream MAPKs. MAPKKK proteins relay upstream signals through the MAPK cascades to induce cellular responses. However, the molecular mechanisms by which given MAPKKKs are regulated remain largely unknown. Here, we found that serine-threonine protein kinase 38, STK38, physically interacts with the MAPKKKs MEKK1 and MEKK2 (MEKK1/2). The carboxy terminus, including the catalytic domain, but not the amino terminus of MEKK1/2 was necessary for the interaction with STK38. STK38 inhibited MEKK1/2 activation without preventing MEKK1/2 binding to its substrate, SEK1. Importantly, STK38 suppressed the autophosphorylation of MEKK2 without interfering with MEKK2 dimer formation, and converted MEKK2 from its phosphorylated to its nonphosphorylated form. The negative regulation of MEKK1/2 was not due to its phosphorylation by STK38. On the other hand, stk38 short hairpin RNA enhanced sorbitol-induced activation of MEKK2 and phosphorylation of the downstream MAPKKs, MKK3/6. Taken together, our results indicate that STK38 negatively regulates the activation of MEKK1/2 by direct interaction with the catalytic domain of MEKK1/2, suggesting a novel mechanism of MEKK1/2 regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bidlingmaier S, Weiss EL, Seidel C, Drubin DG, Snyder M . (2001). The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 21: 2449–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank JL, Gerwins P, Elliott EM, Sather S, Johnson GL . (1996). Molecular cloning of mitogen-activated protein/ERK kinase kinases (MEKK) 2 and 3. Regulation of sequential phosphorylation pathways involving mitogen-activated protein kinase and c-Jun kinase. J Biol Chem 271: 5361–5368.

    Article  CAS  PubMed  Google Scholar 

  • Cano E, Mahadevan LC . (1995). Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signaling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Chayama K, Papst PJ, Garrington TP, Pratt JC, Ishizuka T, Webb S et al. (2001). Role of MEKK2-MEK5 in the regulation of TNF-alpha gene expression and MEKK2-MKK7 in the activation of c-Jun N-terminal kinase in mast cells. Proc Natl Acad USA 98: 4599–4604.

    Article  CAS  Google Scholar 

  • Chen W, White MA, Cobb MH . (2002). Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 277: 49105–49110.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Yang J, Xia Y, Karin M, Su B . (2000). Synergistic interaction of MEK kinase 2, c-Jun N-terminal kinase (JNK) kinase 2, and JNK1 results in efficient and specific JNK1 activation. Mol Cell Biol 20: 2334–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Yu L, Zhang D, Huang Q, Spencer D, Su B . (2005a). Dimerization through the catalytic domain is essential for MEKK2 activation. J Biol Chem 280: 13477–13482.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Zhang D, Kim K, Zhao Y, Zhao Y, Su B . (2005b). Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation. Mol Cell Biol 25: 5955–5964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb MH, Goldsmith EJ . (1995). How MAP kinases are regulated. J Biol Chem 270: 14843–14846.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Deak JC, Templeton DJ . (1997). Regulation of the activity of MEK kinase 1 (MEKK1) by autophosphorylation within the kinase activation domain. Biochem J 322: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto A, Suzuki N, Hirano K, Matsumoto Y, Morita A, Sakai K et al. (2000). Involvement of SAPK/JNK pathway in X-ray-induced rapid cell death of human T-cell leukemia cell line MOLT-4. Cancer lett 155: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto A, Suzuki N, Kang Y, Hirano K, Matsumoto Y, Zhu J et al. (2003). Decreased c-Myc expression and its involvement in X-ray-induced apoptotic cell death of human T-cell leukemia cell line MOLT-4. Int J Radiat Biol 79: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Enslen H, Raingeaud J, Davis RJ . (1998). Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinase MKK3 and MKK6. J Biol Chem 273: 1741–1748.

    Article  CAS  PubMed  Google Scholar 

  • Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR . (1998). 14-3-3 proteins interact with specific MEK kinases. J Biol Chem 273: 3476–3483.

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Clydesdale G, Cheng J, Kim K, Gan L, McConkey DJ et al. (2002). Disruption of Mekk2 in mice reveals an unexpected role for MEKK2 in modulating T-cell receptor signal transduction. Mol Cell Biol 22: 5761–5768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B et al. (1996). Selective interaction of JNK protein isoforms with transcription factors. EMBO J 15: 2760–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ . (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cell. Science 265: 808–811.

    Article  CAS  PubMed  Google Scholar 

  • Hergovich A, Stegert MR, Schmitz D, Hemmings BA . (2006). NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7: 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Herskowitz I . (1995). MAP kinase pathway in yeast: for mating and more. Cell 80: 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K et al. (1999). JSAP1, a novel Jun N-terminal protein kinase (JNK)-binding protein that functions as a scaffold factor in the JNK signaling pathway. Mol Cell Biol 19: 7539–7548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston LH, Eberly SL, Chapman JW, Araki H, Sugino A . (1990). The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle. Mol Cell Biol 10: 1358–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Ben-Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann Rev Immunol 18: 621–663.

    Article  CAS  Google Scholar 

  • Kesavan K, Lobel-Rice K, Sun W, Lapadat R, Webb S, Johnson GL et al. (2004). MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol 199: 140–148.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF et al. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    Article  CAS  PubMed  Google Scholar 

  • Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL . (1993). A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Plowman GD, Hunter T, Sudarsanam S . (2002). Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27: 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Marshall CJ . (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, Yujiri T, Papst PJ, Chan ED, Johnson GL, Terada N . (1999). MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proc Natl Acad USA 96: 15127–15132.

    Article  CAS  Google Scholar 

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ et al. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  • Ryoo K, Huh SH, Lee YH, Yoon KW, Cho SG, Choi EJ . (2004). Negative regulation of MEKK1-induced signaling by glutathione S-transferase Mu. J Biol Chem 279: 43589–43594.

    Article  CAS  PubMed  Google Scholar 

  • Su B, Cheng J, Yang J, Guo Z . (2001). MEKK2 is required for T-cell receptor signals in JNK activation and interleukin-2 gene expression. J Biol Chem 276: 14784–14790.

    Article  CAS  PubMed  Google Scholar 

  • Tamaskovic R, Bichsel SJ, Hemmings BA . (2003). NDR family of AGC kinases – essential regulators of the cell cycle and morphogenesis. FEBS Lett 546: 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Verde F, Wiley DJ, Nurse P . (1998). Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc Natl Acad Sci USA 95: 7526–7531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waskiewicz AJ, Cooper JA . (1995). Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammalian and yeast. Curr Opin Cell Biol 7: 798–805.

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Wu Z, Su B, Murray B, Karin M . (1998). JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 12: 3369–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR et al. (1994). Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372: 798–800.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L et al. (2001). The essential role of MEKK3 in TNF-induced NF-κB activation. Nat Immunol 2: 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Yujiri T, Ware M, Widmann C, Oyer R, Russell D, Chan E et al. (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-κB activation. Proc Natl Acad USA 97: 7272–7277.

    Article  CAS  Google Scholar 

  • Zhang D, Facchinetti V, Wang X, Huang Q, Qin J, Su B . (2006). Identification of MEKK2/3 serine phosphorylation site targeted by the Toll-like receptor and stress pathways. EMBO J 25: 97–107.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Ministry of Education, Culture, Sport, Science, and Technology, and the Ministry of Health and Welfare of Japan, as well as by the Public Trust Haraguchi Memorial Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Enomoto.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, A., Kido, N., Ito, M. et al. Negative regulation of MEKK1/2 signaling by Serine-Threonine kinase 38 (STK38). Oncogene 27, 1930–1938 (2008). https://doi.org/10.1038/sj.onc.1210828

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210828

Keywords

This article is cited by

Search

Quick links