Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin

Abstract

The Wnt signaling pathway is essential for embryonic development and carcinogenesis. Upon Wnt stimulation, β-catenin is stabilized and associates with T-cell factor or lymphoid enhancing factor, thereby activating transcription of target genes. In the absence of Wnt stimulation, the level of β-catenin is reduced via glycogen synthase kinase (GSK)-3β-mediated phosphorylation and subsequent proteasome-dependent degradation. Here, we report the identification of Ajuba as a negative regulator of the Wnt signaling pathway. Ajuba is a member of LIM domain-containing proteins that contribute to cell fate determination and regulate cell proliferation and differentiation. We found that enforced expression of Ajuba destabilized β-catenin and suppressed target gene expression. Ajuba promoted GSK-3β-mediated phosphorylation of β-catenin by reinforcing the association between β-catenin and GSK-3β. Furthermore, Wnt stimulation induced both accumulation of β-catenin and destabilization of Ajuba. Our findings suggest that Ajuba is important for regulation of the Wnt signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

APC:

adenomatous polyposis coli

GFP:

green fluorescent protein

GSK-3β:

glycogen synthase kinase-3β

GST:

glutathione S-transferase

HA:

hemagglutinin

LEF:

lymphoid enhancing factor

PBS:

phosphate-buffered saline

TCF:

T-cell factor

References

  • Adachi S, Jigami T, Yasui T, Nakano T, Ohwada S, Omori Y et al. (2004). Role of a BCL9-related b-catenin-binding protein, B9L, in tumorigenesis induced by aberrant activation of Wnt signaling. Cancer Res 64: 8496–8501.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Cadigan KM, Nusse R . (1997). Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305.

    Article  CAS  PubMed  Google Scholar 

  • Dawid IB, Breen JJ, Toyama R . (1998). LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 14: 156–162.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschln T . (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF . (2002). Wnt-3A/b-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 277: 33398–33410.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Goyal RK, Lin P, Kanungo J, Payne AS, Muslin AJ, Longmore GD . (1999). Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Mol Cell Biol 19: 4379–4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A . (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3b and b-catenin and promotes GSK-3b-dependent phosphorylation of b-catenin. EMBO J 17: 1371–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanungo J, Pratt SJ, Marie H, Longmore GD . (2000). Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol Biol Cell 11: 3299–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labalette C, Renard CA, Neuveut C, Buendia MA, Wei Y . (2004). Interaction and functional cooperation between the LIM protein FHL2, CBP/p300, and b-catenin. Mol Cell Biol 24: 10689–10702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA et al. (2004). Acetylation of b-catenin by p300 regulates b-catenin–Tcf4 interaction. Mol Cell Biol 24: 3404–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Yuan H, Weaver CD, Mao J, Farr III GH, Sussman DJ et al. (1999). Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J 18: 4233–4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J, Wang J, Liu B, Pan W, Farr III GH, Flynn C et al. (2001). Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7: 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kuhl M et al. (2002). The LIM-only protein FHL2 interacts with b-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 159: 113–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JR, Moon RT . (1996). Signal transduction through b-catenin and specification of cell fate during embryogenesis. Genes Dev 10: 2527–2539.

    Article  CAS  PubMed  Google Scholar 

  • Peifer M, Polakis P . (2000). Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287: 1606–1609.

    Article  CAS  PubMed  Google Scholar 

  • Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD . (2005). The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J Cell Biol 168: 813–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF et al. (1993). Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559–1571.

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto S, Higano K, Takada R, Ito F, Takeichi M, Takada S . (1998). Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes Cells 3: 659–670.

    Article  CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the b-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y et al. (2000). Inhibition of Wnt signaling by ICAT, a novel b-catenin-interacting protein. Genes Dev 14: 1741–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z et al. (2004). A mechanism for Wnt coreceptor activation. Mol Cell 13: 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). b-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E . (2003). Wg/Wnt signal can be transmitted through arrow/LRP5, 6 and Axin independently of Zw3/Gsk3b activity. Dev Cell 4: 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Renard CA, Labalette C, Wu Y, Levy L, Neuveut C et al. (2003). Identification of the LIM protein FHL2 as a coactivator of b-catenin. J Biol Chem 278: 5188–5194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T Nakamura for β-catenin plasmids, A Kikuchi for GSK-3β plasmids and T Kitamura for Plat-E cells. We also thank N Tokai-Nishizumi, T Suzuki, K Yokoyama and M Delawary for experimental suggestions. This work was supported by grants-in-aid from the Japan Society for the Promotion of Science and from the Ministry of Education, Cultures, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Yamamoto.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraguchi, K., Ohsugi, M., Abe, Y. et al. Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin. Oncogene 27, 274–284 (2008). https://doi.org/10.1038/sj.onc.1210644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210644

Keywords

This article is cited by

Search

Quick links