Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells

Abstract

Although Kruppel-like factor 5 (KLF5) is a transcription factor that has been implicated in pathways critical to carcinogenesis, controversy persists as to whether it functions as a tumor suppressor or as an oncogene. Here, we describe a novel role for KLF5 in a p53-independent apoptotic pathway. Using RNA-interference technology, we show that cells deficient in KLF5 have increased sensitivity to DNA damage, regardless of p53 status. Both p53 and p53-dependent factors are unaffected by KLF5 depletion. Instead, the apoptotic phenotype consequent to damage is associated with reduced bad phosphorylation, and downregulation of Pim1. Consistently, transfection of wild-type Pim1 is sufficient to rescue this phenotype. Previous data have shown a number of putative Sp1-binding consensus sequences on the Pim1 promoter. Remarkably, chromatin immunoprecipitation studies show that KLF5 binds to the Pim1 promoter, and that binding increases soon after damage. These results identify a novel, p53-independent apoptotic pathway through which KLF5 functions in response to DNA damage. Therapeutic deregulation of this pathway could be used to modulate chemosensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi R, Thompson CB . (2005). The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115: 2618–2624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman NW, Tan D, Pestell RG, Black JD, Black AR . (2004). Intestinal tumor progression is associated with altered function of KLF5. J Biol Chem 279: 12093–12101.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann A . (2002). Survival signaling goes BAD. Dev Cell 3: 607–608.

    Article  CAS  PubMed  Google Scholar 

  • Black AR, Black JD, Azizkhan-Clifford J . (2001). Sp1 and Kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188: 143–160.

    Article  CAS  PubMed  Google Scholar 

  • Chao DT, Korsmeyer SJ . (1998). BCL-2 family: regulators of cell death. Annu Rev Immunol 16: 395–419.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Benjamin MS, Sun X, Otto KB, Guo P, Dong XY et al. (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation in the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118: 1346–1355.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Bhalala HV, Qiao H, Dong JT . (2002). A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene 21: 6567–6572.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Bhalala HV, Vessella RL, Dong JT . (2003). KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW et al. (2005a). Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 24: 3319–3327.

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML et al. (2005b). Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 23: 7286–7295.

    Article  CAS  PubMed  Google Scholar 

  • Dong JT . (2001). Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20: 173–193.

    Article  CAS  PubMed  Google Scholar 

  • Felsher DW . (2003). Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 3: 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW . (2005). Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB . (2005). Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 105: 4477–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M et al. (2004). p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101: 7386–7391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczynski J, Cook T, Urrutia R . (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4: 206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kho PS, Wang Z, Zhuang L, Li Y, Chew JL, Ng HH et al. (2004). p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 279: 21183–21192.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS . (2006). Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 7: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeker TC, Loeb J, Ayres M, Sellers W . (1990). The human Pim-1 gene is selectively transcribed in different hemato-lymphoid cell lines in spite of a G + C-rich housekeeping promoter. Mol Cell Biol 10: 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsiades CS, Mitsiades N, Koutsilieris M . (2004). The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4: 235–256.

    Article  CAS  PubMed  Google Scholar 

  • Nagai R, Shindo T, Manabe I, Suzuki T, Kurabayashi M . (2003). KLF5/BTEB2, a Kruppel-like zinc-finger type transcription factor, mediates both smooth muscle cell activation and cardiac hypertrophy. Adv Exp Med Biol 538: 57–65. Discussion 66.

    Article  CAS  PubMed  Google Scholar 

  • Nandan MO, Yoon HS, Zhao W, Ouko LA, Chanchevalap S, Yang VW . (2004). Kruppel-like factor 5 mediates the transforming activity of oncogenic H-Ras. Oncogene 23: 3404–3413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B . (1996). Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10: 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  • Rainio EM, Ahlfors H, Carter KL, Ruuska M, Matikainen S, Kieff E et al. (2005). Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity. Virology 333: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Ruvolo PP, Deng X, May WS . (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Safe S, Abdelrahim M . (2005). Sp transcription factor family and its role in cancer. Eur J Cancer 41: 2438–2448.

    Article  CAS  PubMed  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zhang Z, Wang X, Liu S, Teng CT . (1999). Isolation and characterization of a gene encoding human Kruppel-like factor 5 (IKLF): binding to the CAAT/GT box of the mouse lactoferrin gene promoter. Nucleic Acids Res 27: 4807–4815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun R, Chen X, Yang VW . (2001). Intestinal-enriched Kruppel-like factor (Kruppel-like factor 5) is a positive regulator of cellular proliferation. J Biol Chem 276: 6897–6900.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Aizawa K, Matsumura T, Nagai R . (2005). Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Goldstein BG, Chao HH, Katz JP . (2005). KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther 4: 1216–1221.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q . (2005). Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA 102: 16090–16095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr B Vogelstein and P Koskinen for kindly providing reagents, and Drs M van der Heijden and A Thiagarajan for critically evaluating the manuscript. This project was funded by the Cancer Research and Education Fund from the National Cancer Centre, Singapore and through a Singhealth Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N G Iyer.

Additional information

Supplementary Information accompanies the paper on the Oncogene web site (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Hamza, M., Leong, H. et al. Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 27, 1–8 (2008). https://doi.org/10.1038/sj.onc.1210625

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210625

Keywords

This article is cited by

Search

Quick links