Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity

Abstract

In response to genotoxic stress, multiple kinase signaling cascades are activated, many of them directed towards the tumor suppressor p53, which coordinates the DNA damage response (DDR). Defects in DDR pathways lead to an accumulation of mutations that can promote tumorigenesis. Emerging evidence implicates multiple members of the NimA-related kinase (NEK) family (NEK1, NEK10, and NEK11) in the DDR. Here, we describe a function for NEK10 in the regulation of p53 transcriptional activity through tyrosine phosphorylation. NEK10 loss increases cellular proliferation by modulating the p53-dependent transcriptional output. NEK10 directly phosphorylates p53 on Y327, revealing NEK10’s unexpected substrate specificity. A p53 mutant at this site (Y327F) acts as a hypomorph, causing an attenuated p53-mediated transcriptional response. Consistently, NEK10-deficient cells display heightened sensitivity to DNA-damaging agents. Further, a combinatorial score of NEK10 and TP53-target gene expression is an independent predictor of a favorable outcome in breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NEK10 loss leads to an increase in cellular proliferation and DNA replication.
Fig. 2: NEK10 status modulates the expression of p53-responsive genes.
Fig. 3: NEK10 modulates expression of p53-responsive genes in a kinase-dependent manner.
Fig. 4: NEK10 phosphorylates p53 on Y327 in vitro and in cells.
Fig. 5: Phosphorylation of p53 Y327 by NEK10 effects expression of p53-responsive genes.
Fig. 6: NEK10 modulates the expression of p53-responsive genes in response to genotoxic agents.
Fig. 7: NEK10 loss sensitizes cells to chemotherapeutic agents.
Fig. 8: NEK10 expression correlates with patient survival in patients with functional TP53 and radioresponse.

Similar content being viewed by others

References

  1. Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37.

    CAS  PubMed  Google Scholar 

  2. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Horn HF, Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene. 2007;26:1306–16.

    CAS  PubMed  Google Scholar 

  4. Pappas K, Xu J, Zairis S, Resnick-Silverman L, Abate F, Steinbach N. et al. p53 maintains baseline expression of multiple tumor suppressor genes. Mol Cancer Res. 2017;15:1051–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.

    CAS  PubMed  Google Scholar 

  6. Malkin D. Li-fraumeni syndrome. Genes Cancer. 2011;2:475–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    CAS  PubMed  Google Scholar 

  8. Huang LC, Clarkin KC, Wahl GM. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci USA. 1996;93:4827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol. 2014;1:e969653.

    PubMed  PubMed Central  Google Scholar 

  10. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20:199–210.

    CAS  PubMed  Google Scholar 

  11. Chen Y, Chen PL, Chen CF, Jiang X, Riley DJ. Never-in-mitosis related kinase 1 functions in DNA damage response and checkpoint control. Cell Cycle. 2008;7:3194–201.

    CAS  PubMed  Google Scholar 

  12. Chen Y, Chen CF, Riley DJ, Chen PL. Nek1 kinase functions in DNA damage response and checkpoint control through a pathway independent of ATM and ATR. Cell Cycle. 2011;10:655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabir SR, Sahota NK, Jones GD, Fry AM. Loss of Nek11 prevents G2/M arrest and promotes cell death in HCT116 colorectal cancer cells exposed to therapeutic DNA damaging agents. PLoS ONE. 2015;10:e0140975

    PubMed  PubMed Central  Google Scholar 

  14. Melixetian M, Klein DK, Sorensen CS, Helin K. NEK1 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol. 2009;11:1247–53.

    CAS  PubMed  Google Scholar 

  15. Noguchi K, Fukazawa H, Murakami Y, Uehara Y. Nek1 a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem. 2002;277:39655–65.

    CAS  PubMed  Google Scholar 

  16. Fletcher L, Cerniglia GJ, Nigg EA, Yend TJ, Muschel RJ. Inhibition of centrosome separation after DNA damage: a role for Nek2. Radiat Res. 2004;162:128–35.

    CAS  PubMed  Google Scholar 

  17. Mi J, Guo C, Brautigan DL, Larner JM. Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res. 2007;67:1082–9.

    CAS  PubMed  Google Scholar 

  18. Lee M.Y, Kim H.J, Kim M.A, Jee H.J, Kim A.J, Bae Y.S. et al. Nek6 is involved in G2/M phase cell cycle arrest through DNA damage-induced phosphorylation. Cell Cycle. 2008;7:2705–9.

    CAS  PubMed  Google Scholar 

  19. Choi HJ, Lin JR, Vannier JB, Slaats GG, Kile AC, Paulsen RD. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol Cell. 2013;51:423–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abeyta A, Castella M, Jacquemont C, Taniguchi T. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Cell Cycle. 2017;16:335–47.

    CAS  PubMed  Google Scholar 

  21. Smith SC, Petrova AV, Madden MZ, Wang H, Pan Y, Warren MD. et al. A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response. Nucleic Acids Res. 2014;42:11517–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moniz LS, Stambolic V. Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol. 2011;31:30–42.

    CAS  PubMed  Google Scholar 

  23. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–83.

    CAS  PubMed  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pp 11

    Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Google Scholar 

  26. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA. Cancer Genome Atlas Research, N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    PubMed  PubMed Central  Google Scholar 

  27. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. 2009;41:585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res. 2010;704:12–20.

    CAS  PubMed  Google Scholar 

  29. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–69.

    CAS  PubMed  Google Scholar 

  30. Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006;209:13–20.

    CAS  PubMed  Google Scholar 

  31. Junttila MR, Evan GI. p53-a Jack of all trades but master of none. Nat Rev Cancer. 2009;9:821–9.

    CAS  PubMed  Google Scholar 

  32. Moniz, LS. Characterization of NimA-related kinase 10 (NEK10): a role in checkpoint control. University of Toronto, Toronto, Canada; 2010. 178 leaves.

  33. Huang YF, Bulavin DV. Oncogene-mediated regulation of p53 ISGylation and functions. Oncotarget. 2014;5:5808–18.

    PubMed  PubMed Central  Google Scholar 

  34. Tsai CF, Wang YT, Yen HY, Tsou CC, Ku WC, Lin PY. et al. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun. 2015;6:6622

    CAS  PubMed  Google Scholar 

  35. Bai Y, Li J, Fang B, Edwards A, Zhang G, Bui M. et al. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res. 2012;72:2501–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van de Kooij B, Creixell P, van Vlimmeren A, Joughin B, Miller CJ, Haider N. et al. Comprehensive substrate specificity profiling of the human Nek kinome reveals unexpected signaling outputs. Elife. 2019;8:e44635. https://doi.org/10.7554/eLife.44635.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene. 2005;24:6976–81.

    CAS  PubMed  Google Scholar 

  38. Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry. 2010;49:5331–9.

    CAS  PubMed  Google Scholar 

  39. Chong LT, Swope WC, Pitera JW, Pande VS. Kinetic computational alanine scanning: application to p53 oligomerization. J Mol Biol. 2006;357:1039–49.

    CAS  PubMed  Google Scholar 

  40. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G. et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–5.

    CAS  PubMed  Google Scholar 

  41. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G. et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–416 e11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McGale P, Taylor C, Correa C, Cutter D, Duane F. EBCTC, G et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383:2127–35.

    CAS  PubMed  Google Scholar 

  46. Darby S, McGale P, Correa C, Taylor C, Arriagada R. Early Breast Cancer Trialists’ Collaborative, G. et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378:1707–16.

    CAS  PubMed  Google Scholar 

  47. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18:7644–55.

    CAS  PubMed  Google Scholar 

  48. Meek DW. The p53 response to DNA damage. DNA Repair (Amst). 2004;3:1049–56.

    CAS  Google Scholar 

  49. Jee HJ, Kim AJ, Song N, Kim HJ, Kim M, Koh Ne H. et al. k6 overexpression antagonizes p53-induced senescence in human cancer cells. Cell Cycle. 2010;9:4703–10.

    CAS  PubMed  Google Scholar 

  50. Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R. et al. Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene. 2010;29:4046–57.

    CAS  PubMed  Google Scholar 

  51. Moniz L, Dutt P, Haider N, Stambolic V. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div. 2011;6:18

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang S, El-Deiry WS. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res. 2006;66:6982–9.

    CAS  PubMed  Google Scholar 

  53. Hudson JM, Frade R, Bar-Eli M. Wild-type p53 regulates its own transcription in a cell-type specific manner. DNA Cell Biol. 1995;14:759–66.

    CAS  PubMed  Google Scholar 

  54. Deffie A, Wu H, Reinke V, Lozano G. The tumor suppressor p53 regulates its own transcription. Mol Cell Biol. 1993;13:3415–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X. et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21:8696–704.

    CAS  PubMed  Google Scholar 

  56. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L. et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA. 1999;96:3706–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–15.

    CAS  PubMed  Google Scholar 

  58. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19:1202–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A. et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol. 2006;173:533–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T. et al. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol. 2006;26:6859–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16:110–20.

    CAS  PubMed  Google Scholar 

  62. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24:628–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.

    CAS  PubMed  Google Scholar 

  64. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA. et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.

    CAS  PubMed  Google Scholar 

  65. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6.

    CAS  PubMed  Google Scholar 

  66. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. et al. Clonogenic assay of cells in vitro. Nat Protoc.2006;1:2315–9.

    CAS  PubMed  Google Scholar 

  67. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    CAS  PubMed  Google Scholar 

  68. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA. 2008;105:2415–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y. Cancer Genome Atlas Research, N. et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    PubMed  Google Scholar 

  70. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Google Scholar 

Download references

Acknowledgements

We thank Ryan Dowling and members of the Stambolic group (Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada) for their helpful discussion and advice. We thank Anne van Vlimmeren for technical assistance. This work was supported by the Princess Margaret Hospital Foundation and by the CIHR strategic training fellowship of the EIRR 21st Program (Awarded to NH). The results published here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuk Stambolic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, N., Dutt, P., van de Kooij, B. et al. NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene 39, 5252–5266 (2020). https://doi.org/10.1038/s41388-020-1361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1361-x

This article is cited by

Search

Quick links