Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Exercise training-induced triglyceride lowering negatively correlates with DHEA levels in men with type 2 diabetes

Abstract

OBJECTIVE: To investigate the effect of an exercise training program on lipid profile in correlation with DHEA level and body weight and body composition in type 2 diabetic men.

DESIGN: Longitudinal, controlled clinical intervention study with exercise training consisting of an 8 week supervised program of aerobic exercise (75% VO2 peak, 45 min), twice a week and intermittent exercise, once a week, on a bicyle ergometer.

SUBJECTS: Sixteen men (age 45.4±7.2 y (mean±s.d.), HbA1c 8.15±1.7%, body mass index (BMI) 29.6±4.6 kg/m2) were randomly divided into two groups: trained group (n=8) and control group (n=8).

MEASUREMENTS: Lipid, apo- and lipoprotein and DHEA concentrations. Cross-sectional areas of subcutaneous and visceral adipose tissue and mid-thigh muscle by magnetic resonance imaging.

RESULTS: Training decreased visceral (153.25±38.55 vs 84.20±21.30 cm2, P<0.001), subcutaneous (241.55±49.55 vs 198.00±39.99 cm2, P<0.001) adipose tissue area and triglyceride levels (2.59±1.90 vs 1.79±1.08 nmol/l, P<0.05) and increased mid-thigh muscle cross-sectional area (148.30±36.10 vs 184.35±35.85 cm2, P<0.001), and DHEA levels (11.00±3.10 vs 14.25±4.10 nmol/l, P<0.05) with no modification in body weight. Changes in triglycerides were negatively correlated with changes in DHEA (r=−0.81, P=0.03). This correlation was independent of changes in abdominal fat distribution.

CONCLUSION: Training decreases abdominal fat depots, improves muscular mass and affects favourably triglyceride and DHEA levels. Changes in triglycerides and DHEA were inversely related.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Barrett-Connor E . Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus Ann Intern Med 1992 117: 807–811.

    Article  CAS  Google Scholar 

  2. Andersson B, Marin P, Lissner L, Vermeulen A, Björntorp P . Testosterone concentrations in women and men with NIDDM Diabetes Care 1994 17: 405–411.

    Article  CAS  Google Scholar 

  3. Fontbonne A, Eschwege E, Cambien F, Richard JL, Ducimetiere P, Thibult N, Warnet JM, Claude JR, Rosselin GE . Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris prospective study Diabetologia 1989 32: 300–304.

    Article  CAS  Google Scholar 

  4. Laasko M, Lehto S, Penttila I, Pyorala K . Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes Circulation 1993 88: 1421–1430.

    Article  Google Scholar 

  5. Stamler J, Vaccaro O, Neaton JD, Wentworth D . Multiple risk factor intervention trial research group: diabetes, other risk factors and 12-year mortality for men screened in the multiple risk factor intervention trial Diabetes Care 1993 16: 434–444.

    Article  CAS  Google Scholar 

  6. Howard BV . Lipoprotein metabolism in diabetes mellitus J Lipid Res 1987 28: 613–628.

    CAS  PubMed  Google Scholar 

  7. Barrett-Connor E, Khaw KT . A prospective study of dehydroepiandrosterone sulfate, mortality, and cardiovascular disease New Engl J Med 1986 315: 1519–1524.

    Article  CAS  Google Scholar 

  8. Feldman HA, Johannes CB, McKinlay JB, Longcope C . Low dehydroepiandrosterone sulfate and heart disease in middle-aged men: cross-sectional results from the Massachusetts male aging study Ann Epidemiol 1998 8: 217–228.

    Article  CAS  Google Scholar 

  9. Shono N, Kumagai S, Higaki Y, Nishizumi M, Sasaki H . The relationships of testosterone, estradiol, dehydroepiandrosterone-sulfate and sex hormone-binding globulin to lipid and glucose metabolism in healthy men J Atheroscler Thromb 1996 3: 45–51.

    Article  CAS  Google Scholar 

  10. Haffner SM, Mykkänen L, Valdez RA, Katz MS . Relationship of sex hormones to lipids and lipoproteins in nondiabetic men J Clin Endocrinol Metab 1993 77: 1610–1615.

    CAS  PubMed  Google Scholar 

  11. Milani RV, Lavie CJ, Barbee RW, Littman AB . Lack of effect of exercise training on dehydroepiandrosterone-sulfate Am J Med Sci 1995 310: 242–246.

    CAS  PubMed  Google Scholar 

  12. Yamauchi A, Takei I, Kasuga A, Kitamura Y, Ohashi N, Nakano S, Takayama S, Nakamoto S, Katsukawa F, Saruta T . Depression of dehydroepiandrosterone in Japanese diabetic men—comparison between non-insulin-dependent diabetes mellitus and impaired glucose tolerance Eur J Endocrinol 1996 135: 101–104.

    Article  CAS  Google Scholar 

  13. Welle S, Jozefowicz R, Statt M . Failure of dehydroepiandrosterone to influence energy and protein metabolism in humans J Clin Endocrinol Metab 1990 71: 1259–1264.

    Article  CAS  Google Scholar 

  14. Morales AJ, Nolan JJ, Nelson JC, Yen SSC . Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age J Clin Endocrinol Metab 1994 78: 1360–1367.

    CAS  PubMed  Google Scholar 

  15. Flynn MA, Weaver-Osterholtz D, Sharpe-Timms KL, Allen S, Krause G . Dehydroepiandrosterone replacement in aging humans J Clin Endocrinol Metab 1999 84: 1527–1533.

    CAS  PubMed  Google Scholar 

  16. Nestler JE, Barlascini CO, Clore JN, Blackard WG . Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men J Ciln Endocrinol Metab 1988 66: 57–61.

    Article  CAS  Google Scholar 

  17. Barnard RJ, Jung T, Inkeles SB . Diet and exercise in the treatment of NIDDM. The end for early emphasis Diabetes Care 1994 17: 1469–1472.

    Article  CAS  Google Scholar 

  18. Halle M, Berg A, Garwers U, Baumstark MW, Knisel W, Frathwohl K, König D, Keul J . Influence of 4 weeks' intervention by exercise and diet on low-density lipoprotein subfractions in obese men with type 2 diabetes Metabolism 1999 48: 641–644.

    Article  CAS  Google Scholar 

  19. Ronnemaa T, Marniemi J, Puukka P, Kuusi T . Effects of long-term physical exercise on serum lipids, lipoproteins and lipid metabolizing enzymes in type 2 (non-insulin-dependent) diabetic patients Diabetes Care 1988 7: 79–84.

    CAS  Google Scholar 

  20. Lehmann R, Vokac A, Niedermann K, Agosti K, Spinas GA . Loss of abdominal fat and improvement of the cardiovascular risk profile by regular moderate exercise training in patients with NIDDM Diabetologia 1995 38: 1313–1319.

    Article  CAS  Google Scholar 

  21. Honkola A, Forsen T, Eriksson J . Resistance training improves the metabolic profile in individuals with type 2 diabetes Acta Diabetol 1997 34: 245–248.

    Article  CAS  Google Scholar 

  22. Poirier P, Catellier C, Tremblay A, Nadeau A . Role of body fat loss in the exercise-induced improvement of the plasma lipid profile in non-insulin-dependent diabetes mellitus Metabolism 1996 45: 1383–1387.

    Article  CAS  Google Scholar 

  23. Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R, Janssen I . Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial Ann Intern Med 2000 133: 92–103.

    Article  CAS  Google Scholar 

  24. Mourier A, Gautier JF, De Kerviler E, Bigard AX, Villette JM, Garnier JP, Duvallet A, Guezennec CY, Cathelineau G . Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM Diabetes Care 1997 20: 385–391.

    Article  CAS  Google Scholar 

  25. Astrand PO, Rythning I . A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work J Appl Physiol 1954 7: 218–221.

    Article  CAS  Google Scholar 

  26. Friedewald WT, Levy RI, Fredrickson DS . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin Chem 1972 18: 499–502.

    CAS  PubMed  Google Scholar 

  27. Fiet J, Gosling JP, Soliman H, Galon H, Boudou P, Aubin P, Belanger A, Villette JM, Julien R, Brerault JL, Burthier JM, Morineau G, Al Halnak A, Vexiau P . Coordinated radioimmunoassays for eight plasma steroids relevant to the investigation of hirsutism and acne in women Clin Chem 1994 40: 2296–2305.

    CAS  PubMed  Google Scholar 

  28. Salomaa VV, Tuomilehto J, Jauhiainen M, Korhonen HJ, Stengard J, Uusitupa M, Pitkanen M, Penttila I . Hypertriglyceridemia in different degrees of glucose intolerance in a Finnish population-based study Diabetes Care 1992 15: 657–665.

    Article  CAS  Google Scholar 

  29. Taskinen MR . Hyperlipidaemia in diabetes Clin Endocrinol Metab 1990 4: 743–745.

    CAS  Google Scholar 

  30. Lakka TA, Venalainen JM, Rauramaa R, Salonen R, Tuomilehto J, Salonen JT . Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction New Engl J Med 1994 330: 1549–1554.

    Article  CAS  Google Scholar 

  31. Eriksson J, Taimela S, Eriksson K, Parviainen S, Peltonen J, Kujala U . Resistance training in the treatment of noninsulin-dependent diabetes mellitus Int J Sports Med 1997 18: 242–246.

    Article  CAS  Google Scholar 

  32. Bernton E, Hoover D, Galloway R, Popp K . Adaptation to chronic stress in military trainees. Adrenal androgens, testosterone, glucocorticoids, IGF-1, and immune function Ann NY Acad Sci 1995 774: 217–231.

    Article  CAS  Google Scholar 

  33. Nicklas BJ, Ryan AJ, Treuth MM, Harman SM, Blackman MR, Hurley BF, Rogers MA . Testosterone, growth hormone and IGF-1 responses to acute and chronic resistive exercise in men aged 55–70 years Int J Sports Med 1995 16: 445–450.

    Article  CAS  Google Scholar 

  34. McIntosh MK, Berdanier CD . Differential effects of adrenalectomy and starvation–refeeding on hepatic lipogenic responses to dehydroepiandrosterone and glucocorticoid in BHE and Sprague–Dawley rats J Nutr 1988 118: 1011–1017.

    Article  CAS  Google Scholar 

  35. Cleary MP, Seidenstat R, Tannen RH, Schwartz AG . The effects of dehydroepiandrosterone on adipose tissue cellularity in mice Proc Soc Exp Med 1982 171: 276–284.

    Article  CAS  Google Scholar 

  36. Marin P, Oden B, Björntorp P . Assimilation and mobilization of triglucerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens J Clin Endocrinol Metab 1995 80: 239–243.

    CAS  PubMed  Google Scholar 

  37. Uusitupa MIJ, Niskanen LK, Siitonen O, Voutilainen E, Pyörälä K . Ten-year cardiovascular mortality in relation to risk factors and adnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects Diabetologia 1993 36: 1175–1184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Boudou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudou, P., de Kerviler, E., Erlich, D. et al. Exercise training-induced triglyceride lowering negatively correlates with DHEA levels in men with type 2 diabetes. Int J Obes 25, 1108–1112 (2001). https://doi.org/10.1038/sj.ijo.0801637

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801637

Keywords

This article is cited by

Search

Quick links