Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Treatment of hypertriglyceridemia by two diets rich either in unsaturated fatty acids or in carbohydrates: effects on lipoprotein subclasses, lipolytic enzymes, lipid transfer proteins, insulin and leptin

Abstract

BACKGROUND: There is lack of agreement on which dietary regimen is most suitable for treatment of hypertriglyceridemia, especially if high triglyceride concentrations are not due to obesity or alcohol abuse. We compared the effects on blood lipids of a diet high in total and unsaturated fat with a low-fat diet in patients with triglyceride concentrations of >2.3 mmol/l.

METHODS: Nineteen non-obese male outpatients with triglycerides ranging from 2.30 to 9.94 mmol/l received two consecutive diets for 3 weeks each: first a modified high-fat diet (39% total fat, 8% SFA, 15% monounsaturated fatty acids, 1.6% marine n-3 polyunsaturated fatty acids), and then a low-fat diet (total fat 28%, carbohydrates 54%).

RESULTS: The high-fat diet significantly decreased triglycerides (−63%), total cholesterol (−22%), VLDL cholesterol (−54%), LDL cholesterol (−16%), total apoC-III (−27%), apoC-III in apoB containing lipoproteins (apoC-III LpB; −31%) and in HDL (apoC-III nonLpB; −29%), apoE in serum (−33%) and apoB-containing lipoproteins (nonHDL-E; −42%), LpA-I (−16%), insulin (−36%), and leptin (−26%) and significantly increased the means of HDL cholesterol (+8%), LDL size (+6%), lipoprotein lipase (LPL, +11%), hepatic lipase (+13%), and lecithin: cholesterol acyltransferase (LCAT, +2%). The subsequent low-fat diet increased triglycerides (+63%), VLDL cholesterol (+19%), apoC-III (+23%), apoC-III LpB (+44%) apoC-III nonLpB (+17%), apoE (+29%) and nonHDL-E (+43%), and decreased HDL cholesterol (−12%), LPL (−3%), and LCAT (−3%). Changes in triglycerides correlated with changes in LPL activity and insulin levels.

CONCLUSIONS: In hypertriglyceridemic patients, a modified diet rich in mono- and n-3 polyunsaturated fatty acids is more effective than a carbohydrate-rich low-fat diet in correcting the atherogenic lipoprotein phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Assmann G, Schulte H, von Eckardstein A . Hypertriglyceridemia and elevated levels of lipoprotein(a) are risk factors for major coronary events in middle-aged men Am J Cardiol 1996 77: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  2. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F . Triglyceride concentration and ischemic heart disease. An eight-year follow-up in the Copenhagen Male Study Circulation 1998 97: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  3. Austin MA, Hokanson JE, Edwards KL . Hypertriglyceridemia as a cardiovascular risk factor Am J Cardiol 1998 81: 7B–12B.

    Article  CAS  PubMed  Google Scholar 

  4. Hodis HN, Mack WJ . Triglyceride-rich lipoproteins and progression of atherosclerosis Eurl Heart J 1998 19 (Suppl A): A40–44.

    CAS  Google Scholar 

  5. Luc G, Fievet C, Arveiler D, Evans AE, Bard JM, Cambien F, Fruchart JC, Ducimetiere P . Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur Infarctus du Myocarde J Lipid Res 1996 37: 508–517.

    CAS  PubMed  Google Scholar 

  6. Karpe F . Postprandial lipoprotein metabolism and atherosclerosis J Intern Med 1999 246: 341–355.

    Article  CAS  PubMed  Google Scholar 

  7. Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH . A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction JAMA 1996 276: 882–888.

    Article  CAS  PubMed  Google Scholar 

  8. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM . Low-density lipoprotein subclass patterns and risk of myocardial infarction JAMA 1988 260: 1917–1921.

    Article  CAS  PubMed  Google Scholar 

  9. Tall AR . Plasma cholesteryl ester transfer protein J Lipid Res 1993 34: 1255–1274.

    CAS  PubMed  Google Scholar 

  10. Goldberg IJ . Lipoprotein lipase and lipolysis. Central roles in lipoprotein metabolism and atherogenesis J Lipid Res 1996 37: 693–707.

    CAS  PubMed  Google Scholar 

  11. Santamarina Fojo S, Haudenschild C, Amar M . The role of hepatic lipase in lipoprotein metabolism and atherosclerosis Curr Opin Lipidol 1998 9: 211–219.

    Article  CAS  PubMed  Google Scholar 

  12. Grundy SM . Hypertriglyceridemia, insulin resistance, and the metabolic syndrome Am J Cardiol 1999 83: 25F–29F.

    Article  CAS  PubMed  Google Scholar 

  13. Després JP, Marette A . Relation of components of insulin resistance to coronary disease risk Curr Opin Lipidol 1994 5: 274–289.

    Article  PubMed  Google Scholar 

  14. International Task Force for Prevention of Coronary Heart Disease . Coronary heart disease: reducing the risk. The scientific background to primary and secondary prevention of coronary heart disease. A worldwide view Nutr Metab Cardiovasc Dis 1998 8: 205–271.

    Google Scholar 

  15. The International Committee for the evaluation of hyper-triglyceridemia as a vascular risk factor . The hypertriglyceridemias: risk and management Am J Cardiol 1991 68: 1A–42A.

    Article  Google Scholar 

  16. Harris WS . n-3 Fatty acids and serum lipoproteins: human studies Am J Clin Nutr 1997 65 (Suppl): 1645S–1654S.

    Article  CAS  PubMed  Google Scholar 

  17. Endres S, de Caterina R, Schmidt EB, Kristensen SD . n-3 Polyunsaturated fatty acids: update 1995 Eur J Clin Invest 1995 25: 629–638.

    Article  CAS  PubMed  Google Scholar 

  18. Gardner CD, Kraemer HC . Monounsaturated versus polyunsaturated dietary fat and serum lipids. A meta-analysis Arterioscler Thromb Vasc Biol 1995 15: 1917–1927.

    Article  CAS  PubMed  Google Scholar 

  19. Grundy SM, Denke MA . Dietary influences on serum lipids and lipoproteins J Lipid Res 1990 31: 1149–1172.

    CAS  PubMed  Google Scholar 

  20. Clarke R, Frost C, Collins R, Appleby P, Peto R . Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies BMJ 1997 314: 112–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kris-Etherton PM, Yu S . Individual fatty acid effects on plasma lipids and lipoproteins: human studies Am J Clin Nutr 1997 65 (Suppl): 1628–1644.

    Article  Google Scholar 

  22. National Institutes of Health . National Cholesterol Education Program Second Report of the Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). NIH publication no. 93–3095 1993.

    Google Scholar 

  23. European Atherosclerosis Society (EAS) . Prevention of coronary heart disease: scientific background and new clinical guidelines. Recommendations of the European Atherosclerosis Society prepared by the International Task Force for Prevention of Coronary Heart Disease Nutr Metab Cardiovasc Dis 1992 2: 113–156.

    Google Scholar 

  24. Liu G, Coulston A, Hollenbeck C, Reaven G . The effect of sucrose content in high and low carbohydrate diets on plasma glucose, insulin, and lipid responses in hypertriglyceridemic humans J Clin Endocrinol Metab 1984 59: 636–642.

    Article  CAS  PubMed  Google Scholar 

  25. Ullmann D, Connor WE, Hatcher LF, Connor SL, Flavell DP . Will a high-carbohydrate, low-fat diet lower plasma lipids and lipoproteins without producing hypertriglyceridemia? Arterioscler Thromb 1991 11: 1059–1067.

    Article  CAS  PubMed  Google Scholar 

  26. Mensink RP, Katan MB . Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials Arterioscler Thromb 1992 12: 911–919.

    Article  CAS  PubMed  Google Scholar 

  27. Mata P, Alvarez-Sala LA, Rubio MJ, Nuno J, De Oya M . Effects of long-term monounsaturated-enriched vs polyunsaturated-enriched diets on lipoproteins in healthy men and women Am J Clin Nutr 1992 55: 846–850.

    Article  CAS  PubMed  Google Scholar 

  28. Ginsberg HN, Barr SL, Gilbert A, Karmally W, Deckelbaum R, Kaplan K, Ramakrishnan R, Holleran S, Dell RB . Reduction of plasma cholesterol levels in normal men on an American Heart Association step 1 diet or step 1 diet with added monounsaturated fat New Engl J Med 1990 322: 574–579.

    Article  CAS  PubMed  Google Scholar 

  29. Fumeron F, Brigant L, Parra HJ, Bard JM, Fruchard JC, Apfelbaum M . Lowering of HDL2-cholesterol and apolipoprotein A-I particle levels by increasing the ratio of poly-unsaturated to saturated fatty acids Am J Clin Nutr 1991 53: 655–659.

    Article  CAS  PubMed  Google Scholar 

  30. Jonas A . Regulation of lecithin cholesterol acyltransferase activity Prog Lipid Res 1998 37: 209–234.

    Article  CAS  PubMed  Google Scholar 

  31. Albers JJ, Tu A-Y, Wolfbauer G, Cheung MC, Marcovina SM . Molecular biology of phospholipid transfer protein Curr Opin Lipidol 1996 7: 88–93.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenbaum M, Leibel RL, Hirsch JH . Obesity. New Engl J Med 1997 337: 396–406.

  33. Bundesinstitut fur gesundheitlichen Verbraucherschutz und Veterinärmedizin (BgVV) . Bundeslebensmittelschlüssel Version II.2 Berlin 1994.

    Google Scholar 

  34. Chung BH, Segrest JP, Ray MJ, Brunzell JD, Hokanson JE, Krauss RM, Beaudrie K, Cone-JT . Single vertical spin density gradient ultracentrifugation Meth Enzymol 1986 128: 181–209.

    Article  CAS  Google Scholar 

  35. Huang Y, von Eckardstein A, Wu S, Assmann G . Effects of the apolipoprotein E-polymorphism on uptake and transfer of cell-derived cholesterol in plasma J Clin Invest 1995 96: 2693–2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hill JS, Pritchard PH . Improved phenotyping of apolipoprotein E. Application to population frequency distribution Clin Chem 1990 36: 1871–1874.

    CAS  PubMed  Google Scholar 

  37. Havel RJ, Eder HA, Bragdon JH . The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum J Clin Invest 1955 34: 1345–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baginsky ML . Measurement of lipoprotein lipase and hepatic lipase in human postheparin plasma Meth Enzymol 1981 72: 325–338.

    Article  CAS  Google Scholar 

  39. Pritchard PH, McLeod R, Frohlich J, Park MC, Kudchodkar BJ, Lacko AG . Lecithin: cholesterol acyltransferase in familial HDL-deficiency Biochim Biophys Acta 1988 958: 227–234.

    Article  CAS  PubMed  Google Scholar 

  40. von Eckardstein A, Funke H, Chirazi A, Chen-Haudenschild C, Schulte H, Schönfeld R, Köhler E, Schwarz S, Steinmetz A, Assmann G . Sex-specific effects of the glutamine/ histidine polymorphism in apolipoprotein A-IV on high density lipoprotein metabolism Arterioscler Thromb 1994 14: 1114–1120.

    Article  CAS  PubMed  Google Scholar 

  41. Jauhiainen M, Metso J, Pahlman R, Blomqvist S, van Tol A, Ehnholm C . Human plasma phospholipid transfer protein causes high density lipoprotein conversion J Biol Chem 1993 268: 4032–4036.

    CAS  PubMed  Google Scholar 

  42. Nie NH . SPSS-X Users's Guide Melgrow-Hill: New York 1983.

    Google Scholar 

  43. Singh RB, Niaz MA, Bishnoi I, Singh U, Begum R, Rastogi SS . Effect of low energy diet and weight loss on major risk factors, central obesity and associated disturbances in patients with essential hypertension J Hum Hypertens 1995 9: 355–362.

    CAS  PubMed  Google Scholar 

  44. Wilson MA, Vega GL, Gylling H, Grundy SM . Persistence of abnormalities in metabolism of apolipoproteins B-100 and A-I after weight reduction in patients with primary hypertriglyceridemia Arterioscler Thromb 1992 12: 976–984.

    Article  CAS  PubMed  Google Scholar 

  45. Dattilo AM, Kris Etherton PM . Effects of weight reduction on blood lipids and lipoproteins. A meta-analysis Am J Clin Nutr 1992 56: 320–328.

    Article  CAS  PubMed  Google Scholar 

  46. Campos, H, Dreon, DM, Krauss, RM . Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses J Lipid Res 1995 36: 462–472.

    CAS  PubMed  Google Scholar 

  47. Ahrens EH, Hirsch J, Oette K, Farquhar JW, Stein Y . Carbohydrate-induced and fat-induced lipemia Trans Assoc Am Physicians 1961 74: 134–146.

    CAS  PubMed  Google Scholar 

  48. Blades B, Garg A . Mechanisms of increase in plasma triglyceride concentrations as a result of high carbohydrate intakes in patients with non-insulin-dependent diabetes mellitus Am J Clin Nutr 1995 62: 996–1002.

    Article  CAS  PubMed  Google Scholar 

  49. Morgan SA, O'Dea K, Sinclair AJ . A low-fat diet supplemented with monounsaturated fat results in less HDL-C lowering than a very-low-fat diet J Am Diet Assoc 1997 97: 151–156.

    Article  CAS  PubMed  Google Scholar 

  50. Mensink RP, Katan MB . Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoprotein cholesterol in healthy woman and men New Engl J Med 1989 321: 436–441.

    Article  CAS  PubMed  Google Scholar 

  51. Harris WS, Connor WE, Illingworth DR, Rothrock DW, Foster DM . Effects of fish oil on VLDL triglyceride kinetics in humans J Lipid Res 1990 31: 1549–1558.

    CAS  PubMed  Google Scholar 

  52. Huang Y, Liu XQ, Rall SC Jr, Taylor JM, von Eckardstein A, Assmann G, Mahley RW . Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia J Biol Chem 1998 273: 26388–26393.

    Article  CAS  PubMed  Google Scholar 

  53. Harris WS, Lu G, Rambjor GS, Walen Al, Ontko JA, Cheng Qi, Windsor SL . Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipases Am J Clin Nutr 1997 66: 254–260.

    Article  CAS  PubMed  Google Scholar 

  54. Zampelas A, Murphy M, Morgan LM, Williams M . Postprandial lipoprotein lipase and gastric inhibitory polypeptide responses to test meals of different fatty acid composition: comparison of saturated, n-6 and n-3 polyunsaturated fatty acids Eur J Clin Nutr 1994 48: 849–858.

    CAS  PubMed  Google Scholar 

  55. Rustan AC, Nensetter MS, Drevon, CA . Omega-3 and omega-6 fatty acids in the insulin resistance syndrome. Lipid and lipoprotein metabolism and atherosclerosis Ann NY Acad Sci 1997 827: 310–326.

    Article  CAS  PubMed  Google Scholar 

  56. Purnell JQ, Brunzell JD . The central role of dietary fat, not carbohydrate, in the insulin resistance syndrome Curr Opin Lipidol 1997 8: 17–22.

    Article  CAS  PubMed  Google Scholar 

  57. Reaven GM . Do carbohydrate diets prevent the development or attenuate the manifestations (or both) of syndrome X. A viewpoint strongly against Curr Opin Lipidol 1997 8: 17–22.

    Article  Google Scholar 

  58. Ahren B, Mansson S, Gingerich RI, Havel PJ . Regulation of plasma leptin in mice. Influence of age, high fat diet, and fasting Am J Physiol 1997 42: R113–R120.

    Google Scholar 

  59. Cha MC, Jones PJH . Dietary fat type and energy restriction interactively influence plasma leptin concentrations in rats J Lipid Res 1998 39: 1655–1660.

    CAS  PubMed  Google Scholar 

  60. Raclot T, Groscolas R, Langin D, Ferré P . Site specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues J Lipid Res 1997 38: 1963–1967.

    CAS  PubMed  Google Scholar 

  61. Romijn D, Wiseman SA, Scheek LM, de Fouw NJ, van Tol A . A linoleic acid enriched diet increases serum cholesterol esterification by lecithin: cholesterol acyltransferase in meal fed rats Ann Nutr Metab 1998 42: 244–250.

    Article  CAS  PubMed  Google Scholar 

  62. Fungwe TV, Kudchodkar BJ, Lacko AG, Dory L . Fatty acids modulate lecithin: cholesterol acyltransferase secretion independently of effects on triglyceride secretion in primary rat hepatocytes J Nutr 1998 128: 1270–1275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Rita Hagel for her excellent technical assistance; Drs Anja Sägers and Gudula Bannenberg for help in the recruitment and the medical care of the patients; the technical staff of the Institute of Arteriosclerosis Research and the Institute of Clinical Chemistry and Laboratory Medicine, University of Münster, for carrying out the laboratory analysis, especially Gaby Klapdor and Bertram TambyRajah for the measurement of lipids and hormones; Michael Stennecken for his help with the statistical analysis; Professor Robenek for the electronmicroscopy of LDL standards; and Dr Erhard Schulte, Institute for Food Chemistry, University of Münster, for analysis of the nutrient composition of the canned fish. We also thank Dr Paul Cullen for critical reading of the manuscript and for his valuable comments Furthermore, we thank Walter RAU Lebensmittelwerke GmbH & Co KG, Hilter, for providing the margarine, and NORDA, Union Deutsche Lebensmittelwerke GmbH, Cuxhaven, for providing the fish. This study was in part supported by a grant from Interdisziplinäres Zentrum fur Klinische Forschung to Dr Arnold von Eckardstein (project A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A von Eckardstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieke, B., von Eckardstein, A., Gülbahçe, E. et al. Treatment of hypertriglyceridemia by two diets rich either in unsaturated fatty acids or in carbohydrates: effects on lipoprotein subclasses, lipolytic enzymes, lipid transfer proteins, insulin and leptin. Int J Obes 24, 1286–1296 (2000). https://doi.org/10.1038/sj.ijo.0801440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801440

Keywords

This article is cited by

Search

Quick links