Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dietary carbohydrates and fats in nonalcoholic fatty liver disease

Abstract

The global prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased in parallel with the epidemic of obesity. Controversy has emerged around dietary guidelines recommending low-fat–high-carbohydrate diets and the roles of dietary macronutrients in the pathogenesis of metabolic disease. In this Review, the topical questions of whether and how dietary fats and carbohydrates, including free sugars, differentially influence the accumulation of liver fat (specifically, intrahepatic triglyceride (IHTG) content) are addressed. Focusing on evidence from humans, we examine data from stable isotope studies elucidating how macronutrients regulate IHTG synthesis and disposal, alter pools of bioactive lipids and influence insulin sensitivity. In addition, we review cross-sectional studies on dietary habits of patients with NAFLD and randomized controlled trials on the effects of altering dietary macronutrients on IHTG. Perhaps surprisingly, evidence to date shows no differential effects between free sugars, with both glucose and fructose increasing IHTG in the context of excess energy. Moreover, saturated fat raises IHTG more than polyunsaturated or monounsaturated fats, with adverse effects on insulin sensitivity, which are probably mediated in part by increased ceramide synthesis. Taken together, the data support the use of diets that have a reduced content of free sugars, refined carbohydrates and saturated fat in the treatment of NAFLD.

Key points

  • Nonalcoholic fatty liver disease (NAFLD), total energy intake and intake of free sugars and refined carbohydrates have increased in parallel; de novo lipogenesis, which produces saturated fat from sugars, contributes to NAFLD.

  • Saturated fat intakes have remained well above the recommended maximum of 10% total energy in many developed countries/regions worldwide, which is of concern in NAFLD as well as cardiovascular disease.

  • The American Association for the Study of Liver Diseases, in contrast to the European Association for the Study of the Liver, did not make any recommendation regarding macronutrient intake in NAFLD and instead called for rigorous, prospective, longer-term trials with histopathological end points.

  • Analysis of existing trials shows that high-fat–low-carbohydrate diets containing high saturated fat increase intrahepatic triglyceride (IHTG) content more than low-fat–high-carbohydrate diets.

  • Saturated fat-enriched diets increase IHTG more than polyunsaturated or monounsaturated diets; ceramides probably contribute to saturated fat-induced adverse metabolic and cardiovascular consequences.

  • The limited data available support the use of a Mediterranean diet that is low in saturated fat with high amounts of monounsaturated fat and dietary fibre in the treatment of NAFLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic fates of free sugars and SFAs.
Fig. 2: Effects of fats and carbohydrates on liver fat content.
Fig. 3: Metabolic effects of excessive intakes of saturated fat and free sugars.
Fig. 4: Sugar metabolism and regulation.

Similar content being viewed by others

References

  1. Moore, J. B. From sugar to liver fat and public health: systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc. Nutr. Soc. 78, 290–304 (2019).

    Article  PubMed  Google Scholar 

  2. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease–meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  3. Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654.e9 (2015).

    Article  PubMed  Google Scholar 

  4. Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Johnston, B. C. et al. Unprocessed red meat and processed meat consumption: dietary guideline recommendations from the Nutritional Recommendations (NutriRECS) Consortium. Ann. Intern. Med. 171, 756–764 (2019).

    Article  PubMed  Google Scholar 

  7. Zhang, Z., Thorne, J. L. & Moore, J. B. Vitamin D and nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 22, 449–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Sato, K. et al. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Nutrition 31, 923–930 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Safari, Z. & Gerard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol. Life Sci. 76, 1541–1558 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, L., Li, P., Liu, Y. & Zhang, Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta-analysis. Dig. Dis. Sci. 64, 3402–3412 (2019).

    Article  PubMed  Google Scholar 

  11. Jump, D. B., Lytle, K. A., Depner, C. M. & Tripathy, S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther. 181, 108–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Wijarnpreecha, K., Thongprayoon, C. & Ungprasert, P. Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 29, e8–e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Marventano, S. et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: a systematic review and meta-analysis of observational studies. Clin. Nutr. 35, 1269–1281 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Rehm, J. & Patra, J. Different guidelines for different countries? On the scientific basis of low-risk drinking guidelines and their implications. Drug Alcohol Rev. 31, 156–161 (2012).

    Article  PubMed  Google Scholar 

  15. Eslam, M., Sanyal, A. J., George, J. & International Consensus, P. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    Article  PubMed  Google Scholar 

  17. European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity. EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  18. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    Article  PubMed  Google Scholar 

  19. Glen, J., Floros, L., Day, C. & Pryke, R., Guideline Development Group. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ 354, i4428 (2016).

    Article  PubMed  Google Scholar 

  20. Moore, J. B. & Boesch, C. Getting energy balance right in an obesogenic world. Proc. Nutr. Soc. 78, 259–261 (2019).

    Article  PubMed  Google Scholar 

  21. Lloyd-Jones, D. et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  22. Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore, J. B. & Fielding, B. A. Sugar and metabolic health: is there still a debate? Curr. Opin. Clin. Nutr. Metab. Care 19, 303–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wise, J. Major report backs overhaul of US dietary guideline process. BMJ 358, j4340 (2017).

    Article  PubMed  Google Scholar 

  25. Teicholz, N. The scientific report guiding the US dietary guidelines: is it scientific? BMJ 351, h4962 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Clifton, P. We need more data before rejecting the saturated fat hypothesis. BMJ 347, f6847 (2013).

    Article  PubMed  Google Scholar 

  27. Lim, D. C. Sugar, not fat, is the culprit. BMJ 347, f6846 (2013).

    Article  PubMed  Google Scholar 

  28. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    Article  PubMed  Google Scholar 

  29. Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Ryan, M. C. et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 59, 138–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281.e4 (2019).

    Article  PubMed  Google Scholar 

  32. Kenneally, S., Sier, J. H. & Moore, J. B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 4, e000139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koutoukidis, D. A. et al. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: a systematic review and meta-analysis. JAMA Int. Med. 179, 1262–1271 (2019).

    Article  Google Scholar 

  34. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    Article  PubMed  Google Scholar 

  35. Pais, R. et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59, 550–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    Article  PubMed  Google Scholar 

  37. National Cancer Institute. Cancer Trends Progress Report 2020 Update. Cancer.gov https://progressreport.cancer.gov/prevention/fat_consumption (2021).

  38. Davy, B. M. & Estabrooks, P. A. The validity of self-reported dietary intake data: focus on the “What We Eat In America” component of the National Health and Nutrition Examination Survey Research Initiative. Mayo Clin. Proc. 90, 845–847 (2015).

    Article  PubMed  Google Scholar 

  39. Archer, E., Pavela, G. & Lavie, C. J. The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of National Dietary Guidelines. Mayo Clin. Proc. 90, 911–926 (2015).

    Article  PubMed  Google Scholar 

  40. Food and Agricultural Organization of the United Nations. FAOSTAT new food balances. FAO http://www.fao.org/faostat/en/#data/FBS (2018).

  41. Ritchie H. & Roser, M. Diet compositions. Our World in Data https://ourworldindata.org/diet-compositions#diet-compositions-by-macronutrient (2017).

  42. Musso, G. et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37, 909–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Toshimitsu, K. et al. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 23, 46–52 (2007).

    Article  PubMed  Google Scholar 

  44. Zelber-Sagi, S. et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J. Hepatol. 47, 711–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, C. H. et al. Nutritional assessments of patients with non-alcoholic fatty liver disease. Obes. Surg. 20, 154–160 (2010).

    Article  PubMed  Google Scholar 

  46. Zelber-Sagi, S. et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 68, 1239–1246 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Noureddin, M. et al. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: the Multiethnic Cohort. Hepatology 71, 1940–1952 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Jia, Q. et al. Dietary patterns are associated with prevalence of fatty liver disease in adults. Eur. J. Clin. Nutr. 69, 914–921 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Oddy, W. H. et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am. J. Gastroenterol. 108, 778–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Soleimani, D. et al. Dietary patterns in relation to hepatic fibrosis among patients with nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 12, 315–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma, J. et al. Improved diet quality associates with reduction in liver fat, particularly in individuals with high genetic risk scores for nonalcoholic fatty liver disease. Gastroenterology 155, 107–117 (2018).

    Article  PubMed  Google Scholar 

  52. Khalatbari-Soltani, S. et al. The association between adherence to the Mediterranean diet and hepatic steatosis: cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study. BMC Med. 17, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Asgari-Taee, F. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Nutr. 58, 1759–1769 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, H. et al. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: an updated systematic review and dose-response meta-analysis. Int. J. Environ. Res. Public Health 16, 2192 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  55. Charidemou, E. et al. A randomized 3-way crossover study indicates that high-protein feeding induces de novo lipogenesis in healthy humans. JCI Insight 4, e124819 (2019).

    Article  PubMed Central  Google Scholar 

  56. Aarsland, A. & Wolfe, R. R. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J. Lipid Res. 39, 1280–1286 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Jacome-Sosa, M. M. & Parks, E. J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr. Opin. Lipidol. 25, 213–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Parks, E. J., Skokan, L. E., Timlin, M. T. & Dingfelder, C. S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 138, 1039–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hellerstein, M. K. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur. J. Clin. Nutr. 53 (Suppl. 1), S53–S65 (1999).

    Article  PubMed  Google Scholar 

  63. Schwarz, J. M., Neese, R. A., Turner, S., Dare, D. & Hellerstein, M. K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J. Clin. Invest. 96, 2735–2743 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGarry, J. D., Mannaerts, G. P. & Foster, D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Invest. 60, 265–270 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hodson, L. et al. Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study. Eur. J. Clin. Nutr. 71, 973–979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hellerstein, M. K. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87, 1841–1852 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marques-Lopes, I., Ansorena, D., Astiasaran, I., Forga, L. & Martinez, J. A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am. J. Clin. Nutr. 73, 253–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Diraison, F., Moulin, P. & Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29, 478–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Mancina, R. M. et al. Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant. J. Clin. Endocrinol. Metab. 100, E821–E825 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Sevastianova, K. et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 94, 104–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Wilke, M. S. et al. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52, 1628–1637 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J. Clin. Invest. 119, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Santoro, N. et al. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J. Clin. Endocrinol. Metab. 100, E1125–E1132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pramfalk, C. et al. fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65, 1858–1867 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Green, C. J. et al. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Res. Care 8, e000871 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 576 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Stiede, K. et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology 66, 324–334 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Hodson, L. & Gunn, P. J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat. Rev. Endocrinol. 15, 689–700 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Kotronen, A., Juurinen, L., Tiikkainen, M., Vehkavaara, S. & Yki-Jarvinen, H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135, 122–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gastaldelli, A. et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 133, 496–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Mittendorfer, B., Magkos, F., Fabbrini, E., Mohammed, B. S. & Klein, S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 17, 1872–1877 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Nouws, J. et al. Altered in vivo lipid fluxes and cell dynamics in subcutaneous adipose tissues are associated with the unfavorable pattern of fat distribution in obese adolescent girls. Diabetes 68, 1168–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodson, L. & Frayn, K. N. Hepatic fatty acid partitioning. Curr. Opin. Lipidol. 22, 216–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Malmstrom, R. et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 47, 779–787 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Adiels, M. et al. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50, 2356–2365 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Umpleby, A. M. et al. Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin. Sci. 131, 2561–2573 (2017).

    Article  CAS  Google Scholar 

  90. Gill, J. M. et al. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. Am. J. Clin. Nutr. 78, 47–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Havel, R. J., Kane, J. P., Balasse, E. O., Segel, N. & Basso, L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49, 2017–2035 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weiss, M., Keller, U. & Stauffacher, W. Effect of epinephrine and somatostatin-induced insulin deficiency on ketone body kinetics and lipolysis in man. Diabetes 33, 738–744 (1984).

    Article  CAS  PubMed  Google Scholar 

  93. Nosadini, R. et al. Acetoacetate and 3-hydroxybutyrate kinetics in obese and insulin-dependent diabetic humans. Am. J. Physiol. 248, R611–R620 (1985).

    CAS  PubMed  Google Scholar 

  94. Croci, I. et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 62, 1625–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kotronen, A. et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58, 203–208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48, 634–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Petersen, K. F., Befroy, D. E., Dufour, S., Rothman, D. L. & Shulman, G. I. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by 13C magnetic resonance spectroscopy. Cell Metab. 24, 167–171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roberts, R. et al. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am. J. Clin. Nutr. 87, 824–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Leyton, J., Drury, P. J. & Crawford, M. A. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br. J. Nutr. 57, 383–393 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Bessesen, D. H., Vensor, S. H. & Jackman, M. R. Trafficking of dietary oleic, linolenic, and stearic acids in fasted or fed lean rats. Am. J. Physiol. Endocrinol. Metab. 278, E1124–E1132 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42, 769–777 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72, 905–911 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Parry, S. A., Rosqvist, F., Cornfield, T., Barrett, A. & Hodson, L. Oxidation of dietary linoleate occurs to a greater extent than dietary palmitate in vivo in humans. Clin. Nutr. 40, 1108–1114 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Luukkonen, P. K. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41, 1732–1739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kirk, E. et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 136, 1552–1560 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Browning, J. D. et al. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 93, 1048–1052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haufe, S. et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 53, 1504–1514 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Westerbacka, J. et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 90, 2804–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. van Herpen, N. A., Schrauwen-Hinderling, V. B., Schaart, G., Mensink, R. P. & Schrauwen, P. Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J. Clin. Endocrinol. Metab. 96, E691–E695 (2011).

    Article  PubMed  CAS  Google Scholar 

  111. Utzschneider, K. M. et al. Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br. J. Nutr. 109, 1096–1104 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Mardinoglu, A. et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 27, 559–571.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Elmadfa, I. & Kornsteiner, M. Fats and fatty acid requirements for adults. Ann. Nutr. Metab. 55, 56–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Ahn, J., Jun, D. W., Lee, H. Y. & Moon, J. H. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: review and meta-analyses. Clin. Nutr. 38, 2023–2030 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Sobrecases, H. et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab. 36, 244–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Bjermo, H. et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 95, 1003–1012 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Rosqvist, F. et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. J. Clin. Endocrinol. Metab. 104, 6207–6219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rosqvist, F. et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63, 2356–2368 (2014).

    Article  PubMed  Google Scholar 

  119. Kien, C. L., Bunn, J. Y. & Ugrasbul, F. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am. J. Clin. Nutr. 82, 320–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Bozzetto, L. et al. Reduction in liver fat by dietary MUFA in type 2 diabetes is helped by enhanced hepatic fat oxidation. Diabetologia 59, 2697–2701 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S76–S99 (2014).

    Article  PubMed  Google Scholar 

  122. Hooper, L., Martin, N., Abdelhamid, A. & Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 6, CD011737 (2015).

    Google Scholar 

  123. Farvid, M. S. et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130, 1568–1578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yaghootkar, H. et al. Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes 63, 4369–4377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lotta, L. A. et al. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 320, 2553–2563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yaghootkar, H. et al. Genetic evidence for a link between favorable adiposity and lower risk of type 2 diabetes, hypertension, and heart disease. Diabetes 65, 2448–2460 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Ji, Y. et al. Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes 68, 207–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Vessby, B. et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44, 312–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Ryysy, L. et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49, 749–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Seppala-Lindroos, A. et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87, 3023–3028 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Korenblat, K. M., Fabbrini, E., Mohammed, B. S. & Klein, S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134, 1369–1375 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Amaro, A. et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 139, 149–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, Z. & Lazar, M. A. Dissociating fatty liver and diabetes. Trends Endocrinol. Metab. 24, 4–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Chaurasia, B. & Summers, S. A. Ceramides – lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Havulinna, A. S. et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424–2430 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Hilvo, M. et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 61, 1424–1434 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Peterson, L. R. et al. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7, e007931 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lemaitre, R. N. et al. Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663–1672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gorden, D. L. et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Hu, W., Ross, J., Geng, T., Brice, S. E. & Cowart, L. A. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J. Biol. Chem. 286, 16596–16605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xie, C. et al. An intestinal farnesoid X receptor–ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 919 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552.e23 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A. & Fernandez-Checa, J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272, 11369–11377 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Colombini, M. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797, 1239–1244 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Martinez, L. et al. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 6, 41479–41496 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Samuel, V. T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Samuel, V. T. et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ter Horst, K. W. et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 19, 1997–2004 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Raddatz, K. et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 54, 1447–1456 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gorden, D. L. et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE 6, e22775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mehta, N. N. et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59, 172–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Lassenius, M. I. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34, 1809–1815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pang, J. et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 46, 175–182 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Thurman, R. G. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. 275, G605–G611 (1998).

    CAS  PubMed  Google Scholar 

  174. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Deopurkar, R. et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care 33, 991–997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hernandez, E. A. et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695–708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cho, Y. E. et al. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology 73, 2180–2195 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Kavanagh, K. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am. J. Clin. Nutr. 98, 349–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jin, R. et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int. J. Hepatol. 2014, 560620 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Nier, A., Brandt, A., Rajcic, D., Bruns, T. & Bergheim, I. Short-term isocaloric intake of a fructose- but not glucose-rich diet affects bacterial endotoxin concentrations and markers of metabolic health in normal weight healthy subjects. Mol. Nutr. Food Res. 63, e1800868 (2019).

    Article  PubMed  CAS  Google Scholar 

  184. Vors, C. et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J. Clin. Endocrinol. Metab. 100, 3427–3435 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Bowser, S. M. et al. Serum endotoxin, gut permeability and skeletal muscle metabolic adaptations following a short term high fat diet in humans. Metabolism 103, 154041 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Zelber-Sagi, S., Salomone, F. & Mlynarsky, L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: evidence and plausible mechanisms. Liver Int. 37, 936–949 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Van Horn, L. et al. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: a scientific statement from the American Heart Association. Circulation 134, e505–e529 (2016).

    PubMed  Google Scholar 

  188. Bozzetto, L. et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 35, 1429–1435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Errazuriz, I. et al. Randomized controlled trial of a MUFA or fiber-rich diet on hepatic fat in prediabetes. J. Clin. Endocrinol. Metab. 102, 1765–1774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gepner, Y. et al. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial. Circulation 137, 1143–1157 (2018).

    Article  PubMed  Google Scholar 

  191. Gepner, Y. et al. The beneficial effects of Mediterranean diet over low-fat diet may be mediated by decreasing hepatic fat content. J. Hepatol. 71, 379–388 (2019).

    Article  PubMed  Google Scholar 

  192. Properzi, C. et al. Ad libitum Mediterranean and low-fat diets both significantly reduce hepatic steatosis: a randomized controlled trial. Hepatology 68, 1741–1754 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Pepin, A., Stanhope, K. L. & Imbeault, P. Are fruit juices healthier than sugar-sweetened beverages? A review. Nutrients 11, 1006 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  194. Moore, J. B., Gunn, P. J. & Fielding, B. A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6, 5679–5703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maldonado, E. M. et al. Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst. Biol. Appl. 4, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tappy, L. & Le, K. A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Pinnick, K. E. & Hodson, L. Challenging metabolic tissues with fructose: tissue-specific and sex-specific responses. J. Physiol. 597, 3527–3537 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Francey, C. et al. The extra-splanchnic fructose escape after ingestion of a fructose-glucose drink: an exploratory study in healthy humans using a dual fructose isotope method. Clin. Nutr. ESPEN 29, 125–132 (2019).

    Article  PubMed  Google Scholar 

  200. Johnston, R. D. et al. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 145, 1016–1025.e2 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Schwarz, J. M. et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100, 2434–2442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ngo Sock, E. T. et al. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br. J. Nutr. 103, 939–943 (2010).

    Article  PubMed  CAS  Google Scholar 

  203. Silbernagel, G. et al. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. Br. J. Nutr. 106, 79–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Bravo, S., Lowndes, J., Sinnett, S., Yu, Z. & Rippe, J. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles. Appl. Physiol.Nutr. Metab. 38, 681–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Lecoultre, V. et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity 21, 782–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Taskinen, M. R. et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 282, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Sun, S. Z., Anderson, G. H., Flickinger, B. D., Williamson-Hughes, P. S. & Empie, M. W. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 49, 2875–2882 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Marriott, B. P., Hunt, K. J., Malek, A. M. & Newman, J. C. Trends in intake of energy and total sugar from sugar-sweetened beverages in the United States among children and adults, NHANES 2003–2016. Nutrients 11, 2004 (2019).

    Article  PubMed Central  Google Scholar 

  210. Vos, M. B. et al. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation 135, e1017–e1034 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Schwimmer, J. B. et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 321, 256–265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Smajis, S. et al. Metabolic effects of a prolonged, very-high-dose dietary fructose challenge in healthy subjects. Am. J. Clin. Nutr. 111, 369–377 (2020).

    Article  PubMed  Google Scholar 

  213. Yki-Jarvinen, H. Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Nutrients 7, 9127–9138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Frayn, K. N., Arner, P. & Yki-Jarvinen, H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 42, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Weintraub, M. S., Zechner, R., Brown, A., Eisenberg, S. & Breslow, J. L. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J. Clin. Invest. 82, 1884–1893 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mensink, R. P., Zock, P. L., Kester, A. D. & Katan, M. B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77, 1146–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Desmarchelier, C., Borel, P., Lairon, D., Maraninchi, M. & Valero, R. Effect of nutrient and micronutrient intake on chylomicron production and postprandial lipemia. Nutrients 11, 1299 (2019).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.H. is a British Heart Foundation Senior Research Fellow (FS/15/56/31645). P.K.L. is supported by grants from the Sigrid Jusélius, Instrumentarium Science and Novo Nordisk Foundations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Hannele Yki-Järvinen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks S. Zelber-Sagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yki-Järvinen, H., Luukkonen, P.K., Hodson, L. et al. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 18, 770–786 (2021). https://doi.org/10.1038/s41575-021-00472-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00472-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing