Articles in 2021

Filter By:

Year
  • A large-scale and ultrafast combustion synthesis using CO2 as feedstock is demonstrated for the fabrication of nitrogen-enriched graphene frameworks (NGF) with high electrical conductivity, which delivers an upgraded kinetics due to the enhanced ion diffusion and electron transport. Lithium-ion capacitors based on NGF as both cathode and anode exhibit a high gravimetric energy density of 151 Wh kg−1 and power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in electrode materials for high-performance electrochemical energy storage.

    • Chen Li
    • Xiong Zhang
    • Yanwei Ma
    ArticleOpen Access
  • Facile modification of a porous superhydrophobic polytetrafluoroethylene foam produced suitable surface structures to enable fluid slip flow and resist protein fouling. Its monolithic nature offered abrasion durability, while its porosity allowed pressurized air to be supplied to resist fluid impalement and to replenish the air plastron lost to the fluid. Active pore pressure control could resist high fluid pressures and turbulent flow conditions across a wide range of applied pressures. The pneumatically stabilized material yielded large drag reductions even with protein fouling. Coupled with its high hemocompatibility, this easily fabricated material can be viable for incorporation into blood-contacting medical devices.

    • Jennifer Marlena
    • Justin Kok Soon Tan
    • Choon Hwai Yap
    ArticleOpen Access
  • A novel technique is demonstrated for the fabrication of flexible and highly sensitive 1D piezoelectric pressure sensors containing ZnO nanotube arrays grown on 2D graphene layers. Due to the morphology-controlled tunable sensitivity, ultra-small size, and capability of detecting extremely low pressures, the sensors are able to efficiently detect human breath and pulse.

    • Jun Beom Park
    • Minho S. Song
    • Gyu-Chul Yi
    ArticleOpen Access
  • The significance of our results is related to “the quantum breakdown of superconductivity (QBS) and the role of superconducting islands in disordered superconducting systems”. Study on the QBS uses a reverse, comprehensive approach to the appearance of superconductivity, which is of utmost importance not only to understanding the superconducting phase but also to practical applications of superconductors. However, the mechanism underlying the transition to the nonzero resistive state deep in the superconducting state is still under debate. In this work, we have successfully achieved the field-induced QBS in disordred MgB2 thin films via a unique technique of low-energy ion irradiation.

    • Soon-Gil Jung
    • Jung Min Lee
    • Tuson Park
    ArticleOpen Access
  • Owing to their ultrasmall size effect, nanoparticles (NPs) have been extensively researched in biomedicine for potential applications. They can frequently interact with cells in vivo, forming a series of nano-bio interfaces. The resulting nano-bio interfaces play an important role in dominating the physiological effects of NPs. This review will summarize the progress in nano-bio interface interactions based on theoretical models and simulations. The expected goal of this review is to determine how the properties of NPs affect their interaction with cell membranes, to guide the rational de novo design of NPs, and expand their potential biomedical applications.

    • Xiao Zhang
    • Guanghui Ma
    • Wei Wei
    Review ArticleOpen Access
  • Experimental descriptions of Aβ oligomers (oli-Aβs) assembled on surfaces as compared with Aβ monomers (mono-Aβs) are crucial to understanding changes in chemical reactivity. Here, we fabricated Aβ molecular junctions between linker molecular layered electrodes using different Aβ segments and report that electron transport pathways changed from asymmetric hopping across monomeric Aβ junctions to symmetric tunneling across oligomeric Aβ junctions.

    • Sohyeon Seo
    • Jinju Lee
    • Hyoyoung Lee
    ArticleOpen Access
  • The synchronous correspondence relationship between the optical and charge storage performances, and the synergistic intrinsic mechanism between the Al3+ ion intercalation and the surface pseudocapacitance reaction affecting the electrochromic-energy storage performance are revealed using in-situ/operando techniques.

    • Shen Wang
    • Hongbo Xu
    • Yao Li
    ArticleOpen Access
  • We realize the introduction of crystalline chirality into transition metal dichalcogenides by intercalating polyhedra into the lattice and reveal a new type of crystalline chirality interlocked double hourglass Weyl fermion. The best candidate RhV3S6 (P6322) possesses a record wide hourglass energy window of ~380 meV, as well as strong optical circular dichroism (CD) in the infrared regime, both tunable by external strains. The chirality is originally induced by the configuration of intercalated polyhedra, then reduced by the rotational atomic displacements triggered by the intercalation, as indicated by CD calculations.

    • Pu Huang
    • Xinbo Chen
    • Xiuwen Zhang
    ArticleOpen Access
  • We report a unique low-temperature-processed (≤100 °C) method for the scalable deposition of a tellurium nanowire network (Te-nanonet) to fabricate high-performance field-effect transistors (FETs) with stable electrical and optical properties. A maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. The electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.

    • Muhammad Naqi
    • Kyung Hwan Choi
    • Jae-Young Choi
    ArticleOpen Access
  • A dual-responsive Co-MnO2 possessing actuation and an additional response of resistivity change in response to ultra-low visible light is introduced, with the tunable actuation triggered by a simple “activation” and Co-doping treatment. The intrinsic self-sensing, tunable and high-performing actuation in response to vis light signal is utilized to design intelligent robotics devices (e.g., self-adapting load-lifting system and auto-self-sorting finger).

    • Runni Wu
    • Kin Wa Kwan
    • Alfonso Hing Wan Ngan
    ArticleOpen Access
  • The mechanisms involved in the damage of CVD-grown graphene (Gr) and MoS2 are investigated during a roll-based transfer process. We identify two different damage mechanisms, i.e., instability-induced damage and tensile strain-induced damage. The two mechanisms compete, depending on the thickness of the transfer medium, and induce dissimilar damage. By optimizing the thickness, we realize and demonstrate the damage-free transfer of 2D materials. The sheet resistance and mobility of transferred Gr are 235 ± 29 Ω sq–1 and 2250 cm2 V–1 s–1, respectively, with no microscopic cracks or tear-out damage.

    • Chan Kim
    • Min-Ah Yoon
    • Kwang-Seop Kim
    ArticleOpen Access
  • Indium-free un-doped tin dioxide (SnO2) serves as a transparent conducting electrode for indoor organic photovoltaics (OPVs). SnO2 OPV systems demonstrate superior indoor performance compared with indium tin oxide (ITO)-based systems. SnO2-based OPV systems shows 14.6% efficiency under 1000 lx of LED illumination. Low-cost SnO2 can be a promising substitute for expensive ITOs in indoor OPV systems.

    • Jung-Hoon Lee
    • Young-Jun You
    • Jae Won Shim
    ArticleOpen Access
  • By combining the MoS2 channel with the PEDOT:PSS floating layer, a new concept device is proposed. This work demonstrates optoelectronic memory operation with high mechanical endurance through a 1,000-cycle bending test, which also offers multilevel memory programming operation based on light intensity and color.

    • Seongin Hong
    • Junwoo Park
    • Sunkook Kim
    ArticleOpen Access
  • DNA double helix exploiting Watson–Crick base-pairing lays the foundation of DNA nanotechnology. However, other forms of nucleic acids (e.g., triplex, i-motif, and G-quadruplex) exhibiting noncanonical base-base interactions bring about novel functionality. Here, we review the interplay of naturally occurring noncanonical nucleic acids and artificial DNA nanostructures in biomedical applications that have not been possible by duplex formation alone.

    • Shiliang He
    • Zhilei Ge
    • Xiuhai Mao
    Review ArticleOpen Access
  • In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.

    • Zijun Shen
    • Qingming Ma
    • Jie Cao
    Review ArticleOpen Access