Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers

Abstract

The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LFN). The first α-helix and β-strand of each LFN unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of LF's PA-binding domain in complex with the PA octamer.
Figure 2: LFN electron density in the PA8(LFN)4 complex.
Figure 3: The PA octamer binds LFN in two distinct subsites.
Figure 4: Dynamics and thermodynamics of the pre-translocation unfolding of LFN.
Figure 5: The role of the α-clamp in LFN and LF translocation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Wickner, W. & Schekman, R. Protein translocation across biological membranes. Science 310, 1452–1456 (2005).

    Article  CAS  Google Scholar 

  2. Navon, A. & Ciechanover, A. The 26 S proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    Article  CAS  Google Scholar 

  3. Sauer, R.T. et al. Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 119, 9–18 (2004).

    Article  CAS  Google Scholar 

  4. Cheng, Y. Toward an atomic model of the 26S proteasome. Curr. Opin. Struct. Biol. 19, 203–208 (2009).

    Article  Google Scholar 

  5. Young, J.A. & Collier, R.J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76, 243–265 (2007).

    Article  CAS  Google Scholar 

  6. Matouschek, A. Protein unfolding—an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

    Article  CAS  Google Scholar 

  7. Krantz, B.A., Finkelstein, A. & Collier, R.J. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J. Mol. Biol. 355, 968–979 (2006).

    Article  CAS  Google Scholar 

  8. Krantz, B.A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005).

    Article  CAS  Google Scholar 

  9. Thoren, K.L., Worden, E.J., Yassif, J.M. & Krantz, B.A. Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation. Proc. Natl. Acad. Sci. USA 106, 21555–21560 (2009).

    Article  CAS  Google Scholar 

  10. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  Google Scholar 

  11. Martin, A., Baker, T.A. & Sauer, R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008).

    Article  CAS  Google Scholar 

  12. Huang, S., Ratliff, K.S. & Matouschek, A. Protein unfolding by the mitochondrial membrane potential. Nat. Struct. Biol. 9, 301–307 (2002).

    Article  CAS  Google Scholar 

  13. Huang, S., Ratliff, K.S., Schwartz, M.P., Spenner, J.M. & Matouschek, A. Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat. Struct. Biol. 6, 1132–1138 (1999).

    Article  CAS  Google Scholar 

  14. Smith, H. & Keppie, J. Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature 173, 869–870 (1954).

    Article  CAS  Google Scholar 

  15. Friedlander, A.M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).

    CAS  PubMed  Google Scholar 

  16. Agrawal, A. & Pulendran, B. Anthrax lethal toxin: a weapon of multisystem destruction. Cell. Mol. Life Sci. 61, 2859–2865 (2004).

    Article  CAS  Google Scholar 

  17. Ezzell, J.W. & Abshire, T.G. Serum protease cleavage of Bacillus anthracis protective antigen. J. Gen. Microbiol. 138, 543–549 (1992).

    Article  CAS  Google Scholar 

  18. Milne, J.C., Furlong, D., Hanna, P.C., Wall, J.S. & Collier, R.J. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269, 20607–20612 (1994).

    CAS  PubMed  Google Scholar 

  19. Kintzer, A.F. et al. The protective antigen component of anthrax toxin forms functional octameric complexes. J. Mol. Biol. 392, 614–629 (2009).

    Article  CAS  Google Scholar 

  20. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H. & Liddington, R.C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  Google Scholar 

  21. Katayama, H. et al. GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore. Nat. Struct. Mol. Biol. 15, 754–760 (2008).

    Article  CAS  Google Scholar 

  22. Kintzer, A.F. et al. Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma. J. Mol. Biol. 399, 741–758 (2010).

    Article  CAS  Google Scholar 

  23. Pannifer, A.D. et al. Crystal structure of the anthrax lethal factor. Nature 414, 229–233 (2001).

    Article  CAS  Google Scholar 

  24. Lacy, D.B., Wigelsworth, D.J., Melnyk, R.A., Harrison, S.C. & Collier, R.J. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc. Natl. Acad. Sci. USA 101, 13147–13151 (2004).

    Article  CAS  Google Scholar 

  25. Benson, E.L., Huynh, P.D., Finkelstein, A. & Collier, R.J. Identification of residues lining the anthrax protective antigen channel. Biochemistry 37, 3941–3948 (1998).

    Article  CAS  Google Scholar 

  26. Krantz, B.A., Trivedi, A.D., Cunningham, K., Christensen, K.A. & Collier, R.J. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J. Mol. Biol. 344, 739–756 (2004).

    Article  CAS  Google Scholar 

  27. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  28. Lum, R., Niggemann, M. & Glover, J.R. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J. Biol. Chem. 283, 30139–30150 (2008).

    Article  CAS  Google Scholar 

  29. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).

    Article  CAS  Google Scholar 

  30. Zimmer, J., Nam, Y. & Rapoport, T.A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008).

    Article  CAS  Google Scholar 

  31. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    Article  CAS  Google Scholar 

  32. Levchenko, I., Grant, R.A., Flynn, J.M., Sauer, R.T. & Baker, T.A. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Nat. Struct. Mol. Biol. 12, 520–525 (2005).

    Article  CAS  Google Scholar 

  33. Levchenko, I., Grant, R.A., Wah, D.A., Sauer, R.T. & Baker, T.A. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell 12, 365–372 (2003).

    Article  CAS  Google Scholar 

  34. Cunningham, K., Lacy, D.B., Mogridge, J. & Collier, R.J. Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc. Natl. Acad. Sci. USA 99, 7049–7053 (2002).

    Article  CAS  Google Scholar 

  35. Arora, N. & Leppla, S.H. Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J. Biol. Chem. 268, 3334–3341 (1993).

    CAS  PubMed  Google Scholar 

  36. Arora, N. & Leppla, S.H. Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect. Immun. 62, 4955–4961 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Milne, J.C., Blanke, S.R., Hanna, P.C. & Collier, R.J. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol. Microbiol. 15, 661–666 (1995).

    Article  CAS  Google Scholar 

  38. Lacy, D.B., Mourez, M., Fouassier, A. & Collier, R.J. Mapping the anthrax protective antigen binding site on the lethal and edema factors. J. Biol. Chem. 277, 3006–3010 (2002).

    Article  CAS  Google Scholar 

  39. Lacy, D.B. et al. A model of anthrax toxin lethal factor bound to protective antigen. Proc. Natl. Acad. Sci. USA 102, 16409–16414 (2005).

    Article  CAS  Google Scholar 

  40. Melnyk, R.A. et al. Structural determinants for the binding of anthrax lethal factor to oligomeric protective antigen. J. Biol. Chem. 281, 1630–1635 (2006).

    Article  CAS  Google Scholar 

  41. Chauhan, V. & Bhatnagar, R. Identification of amino acid residues of anthrax protective antigen involved in binding with lethal factor. Infect. Immun. 70, 4477–4484 (2002).

    Article  CAS  Google Scholar 

  42. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    Article  CAS  Google Scholar 

  43. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721 (1993).

    Article  CAS  Google Scholar 

  44. Blanke, S.R., Milne, J.C., Benson, E.L. & Collier, R.J. Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc. Natl. Acad. Sci. USA 93, 8437–8442 (1996).

    Article  CAS  Google Scholar 

  45. Christensen, K.A., Krantz, B.A. & Collier, R.J. Assembly and disassembly kinetics of anthrax toxin complexes. Biochemistry 45, 2380–2386 (2006).

    Article  CAS  Google Scholar 

  46. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  47. Landry, S.J. & Gierasch, L.M. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. Biochemistry 30, 7359–7362 (1991).

    Article  CAS  Google Scholar 

  48. Li, Y., Gao, X. & Chen, L. GroEL recognizes an amphipathic helix and binds to the hydrophobic side. J. Biol. Chem. 284, 4324–4331 (2009).

    Article  CAS  Google Scholar 

  49. Wang, Z., Feng, H., Landry, S.J., Maxwell, J. & Gierasch, L.M. Basis of substrate binding by the chaperonin GroEL. Biochemistry 38, 12537–12546 (1999).

    Article  CAS  Google Scholar 

  50. Duesbery, N.S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  Google Scholar 

  51. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  Google Scholar 

  52. MacDowell, A.A. et al. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source. J. Synchrotron Radiat. 11, 447–455 (2004).

    Article  CAS  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  55. Emsley, P. & Cowtan, K. COOT: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  56. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  57. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  58. Mogridge, J., Cunningham, K. & Collier, R.J. Stoichiometry of anthrax toxin complexes. Biochemistry 41, 1079–1082 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Gong, E. Haddadian, T. Sosnick and K. Freed for assistance in refining the backbone torsional angles using their unpublished TOP algorithm; J. Colby for assistance in purifying constructs; M. Brown for constructing the pET15-LFN-SalI vector; J. Berger and N. Echols for advice on crystallography; R. Zalpuri at the Robert D. Ogg Electron Microscope Laboratory; J. Holton and G. Meigs at the 8.3.1 beamline of the Advanced Light Source; and T. Sosnick, J. Collier, J. Berger and J. Kuriyan for helpful advice. This work was supported by University of California start-up funds (B.A.K.) and US National Institutes of Health research grants R01-AI077703 (B.A.K.) and R01-GM064712 (E.R.W.).

Author information

Authors and Affiliations

Authors

Contributions

G.K.F. crystallized, solved and refined the PA8(LFN)4 structure. G.K.F., K.L.T., H.J.S., A.F.K., S.G.G. and I.I.T. obtained functional data. G.K.F., K.L.T., H.J.S., A.F.K., E.R.W. and B.A.K. prepared the manuscript.

Corresponding author

Correspondence to Bryan A Krantz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–12 and Supplementary Table 1 (PDF 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feld, G., Thoren, K., Kintzer, A. et al. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 17, 1383–1390 (2010). https://doi.org/10.1038/nsmb.1923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing