Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional diversity of marine ecosystems after the Late Permian mass extinction event

Abstract

The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62–74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic extinction in benthic functional groups across the Permian/Triassic boundary.
Figure 2: Diversity curves for generic and functional richness across the studied interval.
Figure 3: Relative abundance of genera in each mode of life across the studied interval.
Figure 4: Permian–Triassic functional richness of benthic marine ecosystems.

Similar content being viewed by others

References

  1. Shen, S-Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Google Scholar 

  2. Kearsey, T., Twitchett, R. J., Price, G. D. & Grimes, S. T. Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 29–40 (2009).

    Google Scholar 

  3. Sun, Y. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).

    Google Scholar 

  4. Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Google Scholar 

  5. Benton, M. J. & Twitchett, R. J. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358–365 (2003).

    Google Scholar 

  6. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    Google Scholar 

  7. McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. Ecological ranking of Phanerozoic biodiversity crises: Ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).

    Google Scholar 

  8. Wignall, P. B. & Twitchett, R. J. Extent, duration and nature of the Permian–Triassic superanoxic event. Geol. Soc. Am. Spec. Pap. 356, 395–413 (2002).

    Google Scholar 

  9. Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R. & Richoz, S. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32, 805–808 (2004).

    Google Scholar 

  10. Beatty, T. W., Zonneveld, J-P. & Henderson, C. M. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea; A case for a shallow-marine habitable zone. Geology 36, 771–774 (2008).

    Google Scholar 

  11. Zonneveld, J-P., Gingras, M. K. & Beatty, T. W. Diverse ichnofossil assemblages following the P–T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: Evidence for shallow marine refugia on the northwestern coast of Pangaea. Palaios 25, 368–392 (2010).

    Google Scholar 

  12. Clapham, M. E., Fraiser, M. L., Marenco, P. J. & Shen, S-Z. Taxonomic composition and environmental distribution of post-extinction rhynchonelliform brachiopod faunas: Constraints on short-term survival and the role of anoxia in the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 284–292 (2013).

    Google Scholar 

  13. Wignall, P. B., Morante, R. & Newton, R. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol. Mag. 135, 47–62 (1998).

    Google Scholar 

  14. Twitchett, R. J. & Barras, C. G. Trace fossils in the aftermath of mass extinction events. Geol. Soc. Lond. Spec. Publ. 228, 397–418 (2004).

    Google Scholar 

  15. Fraiser, M. L. & Bottjer, D. J. Opportunistic behaviour of invertebrate marine tracemakers during the early Triassic aftermath of the end-Permian mass extinction. Aust. J. Earth Sci. 56, 841–857 (2009).

    Google Scholar 

  16. Jacobsen, N. D., Twitchett, R. J. & Krystyn, L. Palaeoecological methods for assessing marine ecosystem recovery following the late Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 200–212 (2011).

    Google Scholar 

  17. Webb, A. E. & Leighton, L. R. in Topics in Geobiology 36 (eds Laflamme, M., Schiffbauer, J. D. & Dornbos, S. Q.) 185–220 (Springer, 2011).

    Google Scholar 

  18. Bambach, R. K., Bush, A. M. & Erwin, D. H. Autoecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).

    Google Scholar 

  19. Novack-Gottshall, P. M. Using theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33, 273–294 (2007).

    Google Scholar 

  20. Villéger, S., Novack-Gottshall, P. M. & Mouillot, D. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol. Lett. 14, 561–568 (2011).

    Google Scholar 

  21. Sepkoski, J. J. A compendium of fossil marine animal genera. Bull. Am. Paleont. 362, 1–560 (2002).

    Google Scholar 

  22. Miller, A. I. & Foote, M. Epicontinental seas versus open-ocean settings: The kinetics of mass extinction and origination. Science 326, 1106–1109 (2009).

    Google Scholar 

  23. Green, R. H. Measurement of non-randomness in spatial distributions. Res. Population Ecol. 8, 1–7 (1966).

    Google Scholar 

  24. Clapham, M. E., Shen, S. & Bottjer, D. J. The double mass extinction revisited: Reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35, 32–50 (2009).

    Google Scholar 

  25. Miller, A. I. & Foote, M. Calibrating the Ordovician radiation of marine life: Implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996).

    Google Scholar 

  26. Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483–2490 (2008).

    Google Scholar 

  27. Chen, Z-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci. 5, 375–383 (2012).

    Google Scholar 

  28. Bush, A. M., Bambach, R. K. & Daley, G. M. Changes in theoretical ecospace utilization in marine fossil assemblage between the mid-Paleozoic and late Cenozoic. Paleobiology 33, 76–97 (2007).

    Google Scholar 

  29. Erwin, D. H., Valentine, J. W. & Sepkoski, J. J. A comparative study of diversification events: The early Paleozoic versus the Mesozoic. Evolution 41, 1177–1196 (1987).

    Google Scholar 

  30. Valentine, J. W. Determinants of diversity in higher taxonomic categories. Paleobiology 6, 440–450 (1980).

    Google Scholar 

  31. Baumiller, T. K. et al. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc. Natl Acad. Sci. USA 107, 5893–5896 (2010).

    Google Scholar 

  32. Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Planet. Sci. 39, 241–269 (2011).

    Google Scholar 

  33. Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Google Scholar 

  34. Stanley, S. M. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs: A consequence of mantle fusion and siphon formation. J. Paleontol. 42, 214–229 (1968).

    Google Scholar 

  35. Signor, P. W. & Brett, C. E. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10, 229–245 (1984).

    Google Scholar 

  36. Vermeij, G. J. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3, 245–258 (1977).

    Google Scholar 

  37. Allison, P. A. & Briggs, D. E. G. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21, 65–68 (1993).

    Google Scholar 

  38. Bush, A. M. & Bambach, R. K. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J. Geol. 112, 625–642 (2004).

    Google Scholar 

  39. McGowan, A. J. & Smith, A. B. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34, 80–103 (2008).

    Google Scholar 

  40. Flügel, E. in Phanerozoic Reef Patterns 72 (eds Kiessling, W., Flügel, E. & Golonka, J.) 391–463 (SEPM Special Publications, 2002).

    Google Scholar 

  41. Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Google Scholar 

  42. Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geosci. 4, 693–697 (2011).

    Google Scholar 

  43. Pruss, S. B., Payne, J. L. & Bottjer, D. J. Placunopsis bioherms: The first metazoan buildups following the end-Permian mass extinction. Palaios 22, 17–23 (2007).

    Google Scholar 

  44. Payne, J. L., Lehrmann, D. J., Christensen, S., Wei, J. & Knoll, A. H. Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21, 325–343 (2006).

    Google Scholar 

  45. Ausich, W. I. & Bottjer, D. J. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 384–386 (Blackwell Science, Oxford, 2001).

    Google Scholar 

  46. Twitchett, R. J. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 190–213 (2006).

    Google Scholar 

  47. Hautmann, M. & Nützel, A. First record of a heterodont bivalve (Mollusca) from the early Triassic: Palaeoecological significance and implications for the ‘Lazarus Problem’. Palaeontology 48, 1131–1138 (2005).

    Google Scholar 

  48. Baud, A. et al. Lower Triassic bryozoan beds from Ellesmere Island, High Arctic, Canada. Polar Res. 27, 428–440 (2008).

    Google Scholar 

  49. Shigeta, Y., Zakharov, Y. D., Maeda, H. & Popov, A. M. The Lower Triassic system in the Abrek Bay area, south Primorye, Russia. (National Museum of Nature and Science Monographs 38, Tokyo 2009)

Download references

Acknowledgements

W.J.F. would like to thank S. Danise and G. Price for discussions on data handling, ecospace assignments and analytical approaches. W.J.F. would also like to thank G. Lloyd and M. Bell for discussions on subsampling and programming in R. This study was supported by a Natural Environment Research Council grant (NE/I005641/1) to R.J.T. This is Paleobiology Database official publication No. 195.

Author information

Authors and Affiliations

Authors

Contributions

W.J.F. and R.J.T. are equally responsible for the project design, interpretation and writing. W.J.F. compiled the databases and undertook the analyses.

Corresponding author

Correspondence to William J. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, W., Twitchett, R. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geosci 7, 233–238 (2014). https://doi.org/10.1038/ngeo2079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2079

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing