Self-assembly articles within Nature Communications

Featured

  • Article
    | Open Access

    Synthetic polymer nano-objects with well-defined hierarchical structures are important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Here the authors demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers.

    • Chaojian Chen
    • , Manjesh Kumar Singh
    •  & Tanja Weil
  • Article
    | Open Access

    Past studies on protein nucleation have focused on the routes that molecules follow towards a crystalline cluster, while possible interactions that may occur between nuclei have not been investigated. Here, the authors show that in the high supersaturation limit such interactions dominate the nucleation process in the form of inter-nucleus docking driving by oriented attachment.

    • Alexander E. S. Van Driessche
    • , Nani Van Gerven
    •  & Mike Sleutel
  • Article
    | Open Access

    Artificial self-assembling systems such as anion receptors or ‘binders’ are largely unexplored for therapeutic applications. Here, the authors report self-assembling trimetallic cryptands containing copper, zinc or manganese that encapsulate a range of anions, are highly toxic to human cancer cell lines and show metal-dependent selectivity towards cancer vs. healthy cells linked to the selective inhibition of multiple kinases.

    • Simon J. Allison
    • , Jaroslaw Bryk
    •  & Craig R. Rice
  • Article
    | Open Access

    Active coacervate droplets are droplets coupled to a chemical reaction that maintains them out of equilibrium, which can be used to drive active processes, but coacervates are still subject to passive processes that compete with or mask growth. Here, the authors present a nucleotide-based model for active coacervate droplets that form and grow by fuel-driven synthesis of ATP, and, importantly, do not undergo Ostwald ripening.

    • Karina K. Nakashima
    • , Merlijn H. I. van Haren
    •  & Evan Spruijt
  • Article
    | Open Access

    The removal of ethane from ethylene is of importance in the petrochemical industry, but similar physicochemical properties of these molecules makes separation a challenging task. Here, the authors demonstrate that a robust octahedral calix[4]resorcinarene-based porous organic cage can separate high-purity ethylene from ethane/ethylene mixtures.

    • Kongzhao Su
    • , Wenjing Wang
    •  & Daqiang Yuan
  • Article
    | Open Access

    Self-assembling peptides (SAPs) can be used to build biomaterials, but genetically encoded SAPs have rarely been used as building blocks in cells. Here, the authors design a SAP that can be genetically fused to target proteins to induce their intracellular clustering and modulate their signaling functions.

    • Takayuki Miki
    • , Taichi Nakai
    •  & Hisakazu Mihara
  • Article
    | Open Access

    Living supramolecular polymerization can produce precise covalent polymers, but the scope of monomers is still narrow. Here the authors show a molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6- 22 hexafluorocyclohexane, the most polar aliphatic compound reported to date.

    • Oleksandr Shyshov
    • , Shyamkumar Vadakket Haridas
    •  & Max von Delius
  • Article
    | Open Access

    Membrane-based gas separation exhibits many advantages over other conventional techniques but the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Here, the authors propose a layered double hydroxide (LDH)-polymer hybrid membrane, which shows improved CO2 permselectivity.

    • Xiaozhi Xu
    • , Jiajie Wang
    •  & Dermot O’Hare
  • Article
    | Open Access

    DNA origami is a valuable tool for precise manipulation of molecules in a three dimensional manner, but the design and assembly of origami units into single crystals is challenging. Here, the authors report successful fabrication of DNA origami single crystals with Wulff shapes, and regulation of their shapes by changing the symmetry and binding modes of DNA origami building blocks.

    • Yong Wang
    • , Lizhi Dai
    •  & Ye Tian
  • Article
    | Open Access

    Artificial molecular systems can show complex kinetics of reproduction, however their integration into larger ensembles remains a challenge towards evolving higher order functionality. Here authors use show that self-reproducing lipids can initiate and accelerate octanol droplet movement and that reciprocally chemotactic movement of these droplets increases the rate of lipid reproduction substantially.

    • Dhanya Babu
    • , Robert J. H. Scanes
    •  & Nathalie Katsonis
  • Article
    | Open Access

    Communication of chirality at a molecular level is the fundamental for transmitting chirality information but one-step communication modes in many artificial systems limits further processing the chirality information. Here, the authors report chirality communication of aromatic oligoamide sequences within interpenetrated helicate architecture in a hierarchical manner.

    • Jiajia Zhang
    • , Dan Luo
    •  & Quan Gan
  • Article
    | Open Access

    Semi-conducting two-dimensional polymer nanoobjects are promising materials but examples of self-assembled 2D nanosheets with controlled dimensions has not been shown before. Here, the authors precisely tune the length of 2D sheets of conjugated polymers by using blending, heating, and seeded-growth strategies.

    • Sanghee Yang
    • , Sung-Yun Kang
    •  & Tae-Lim Choi
  • Article
    | Open Access

    Efficient stimulus-responsive phosphorescence organic materials are attractive, but are extremely rare because of unclear design principles and intrinsically spin-forbidden intersystem crossing. Here, the authors present a facile strategy to achieve ultraviolet irradiation-responsive ultralong room-temperature phosphorescence in several simple amorphous polymer materials.

    • Yongfeng Zhang
    • , Liang Gao
    •  & Yanli Zhao
  • Article
    | Open Access

    Rationally designing and precisely constructing the dimensions, configurations and compositions of organic micro- and nanomaterials are key issues in material chemistry, but remain challenging. Here, the authors realize the fine synthesis of organic superstructure microwires via a hierarchical epitaxial-growth approach.

    • Ming-Peng Zhuo
    • , Guang-Peng He
    •  & Liang-Sheng Liao
  • Article
    | Open Access

    Induced motion has emerged as a method to increase the efficacy of delivery and therapeutic outcomes using nanomaterials. Here, the authors report on a Janus gold shell polymersome with aggregation-induced emission molecules for phototactic and photodynamic therapy applications.

    • Shoupeng Cao
    • , Jingxin Shao
    •  & Jan C. M. van Hest
  • Article
    | Open Access

    Macrocycles are molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies but synthesis procedures that can produce macrocycles in high yield under high reaction concentrations are rare. Here the authors report the use of dynamic hindered urea bond for the construction of urea macrocycles with high efficiency.

    • Yingfeng Yang
    • , Hanze Ying
    •  & Jianjun Cheng
  • Article
    | Open Access

    Photoluminescence printing is a widely applied anticounterfeiting technique but there are still challenges in developing new generation anticounterfeiting materials providing a high security level. Here, the authors demonstrate coordination dependent photochromic luminescence in a supramolecular coordination polyelectrolyte for multiple information authentication.

    • Zhiqiang Li
    • , Xiao Liu
    •  & Yanli Zhao
  • Article
    | Open Access

    Structure-forming systems, such as chemical reaction networks, are usually described with the grand-canonical ensemble, but this may be inaccurate for small-sized systems. Here, the authors propose a canonical ensemble approach for closed structure-forming systems, showing its application to physical problems including the self-assembly of soft matter.

    • Jan Korbel
    • , Simon David Lindner
    •  & Stefan Thurner
  • Article
    | Open Access

    Organic ferroelectrics are of potential use in state-of-the-art ferroelectric devices but mechanistic insight in generating ferroelectricity remains limited. Here, the authors demonstrate that a bowl-to-bowl inversion of a bowl shaped organic molecule generates ferroelectric dipole relaxation, extending the concept of ferroelectricity in small organic molecules.

    • Shunsuke Furukawa
    • , Jianyun Wu
    •  & Tomoyuki Akutagawa
  • Article
    | Open Access

    Organic agents with activity in the second near infrared region (NIR-II) are needed for precise treatment of cancer. Here, the authors develop boron difluoride formazanate nanosystem as a theranostic agent active in the NIR-II region for treating deep-seated hepatocellular carcinoma in mice.

    • Huijing Xiang
    • , Lingzhi Zhao
    •  & Yanli Zhao
  • Article
    | Open Access

    In organic semiconducting molecules materials, distorted π-systems enable strong coupling with circular polarized light while planar π-stacking systems are necessary for high charge-carrier mobility. Here, the authors address this dilemma by introducing a skeleton merging approach through distortion of a perylene diimide core with four fused heteroaromatics to form a π-extended double helicene.

    • Li Zhang
    • , Inho Song
    •  & Jianbin Lin
  • Article
    | Open Access

    Thiol-disulfide exchange is an extensively used reversible reaction in dynamic combinatorial chemistry, but usually requires long time to reach equilibrium. Here, the authors employ selenocystine as a catalyst of thiol-disulfide exchange at low temperatures and basic pH, and show that it can promote disulfide bond formation during folding of a scrambled RNase A.

    • Andrea Canal-Martín
    •  & Ruth Pérez-Fernández
  • Article
    | Open Access

    Nanocomposite (NC) printing emerged as a major approach to translate nanomaterial properties to 3D geometries but printing of conventional NCs lacks control over nanomaterial connection. Here, the authors develop viscoelastic Pickering emulgels as NC inks through jamming nanomaterials on interfaces and in continuous phase

    • Yuanyuan Zhang
    • , Guangming Zhu
    •  & Feng Xing
  • Article
    | Open Access

    Design of artificial catalysts to mimic enzyme activity and selectivity is a challenge in the catalysis field. Here, the authors design a platinum catalyst with a porous cage ligand which shows enzyme-like properties, such as high hydrosilylation activity and substrate size selectivity, while being recyclable.

    • Ganghuo Pan
    • , Chunhua Hu
    •  & Yuzhou Liu
  • Article
    | Open Access

    Mimicking the crowded cytosol of cells in synthetic cells has been a major limitation to the functionality. Here, the authors used the interaction between nickel, nitrilotriacetic acid and histidine tagged proteins to control loading of macromolecules into spatially programmed coacervate-based protocells.

    • Wiggert J. Altenburg
    • , N. Amy Yewdall
    •  & Jan C. M. van Hest
  • Article
    | Open Access

    Knowledge about kinetically favored intermediate states in self-assembly processes can provide information about the self-assembly process but trapping these states without changing the reaction conditions is challenging. Here, the authors report a method for trapping metastable intermediates in self-assembly processes that is based on a photopolymerization strategy.

    • Joonsik Seo
    • , Joonyoung F. Joung
    •  & Jong-Man Kim
  • Article
    | Open Access

    The collective properties of atomically precise nanoclusters bear vast potential for electronic materials by design. Here, the authors describe the self-assembly of Au32 nanoclusters into micro-crystals, which improves the electric conductivity and invokes new optical transitions caused by the high structural order.

    • Florian Fetzer
    • , Andre Maier
    •  & Marcus Scheele
  • Article
    | Open Access

    Typical micelles are molecular assemblies composed of amphiphiles bearing linear alkyl chains. Herein, the authors present an uncommon type of cycloalkane-based bent amphiphile and its micelle which encapsulates large metal- complexes with high uptake efficiency, selectivity, and emissivity in water.

    • Mamiko Hanafusa
    • , Yamato Tsuchida
    •  & Michito Yoshizawa
  • Article
    | Open Access

    Inorganic soft materials are an attractive concept but challenging to make. Here the authors have developed a hydrogel consisting of inorganic nanosheets (14 wt%) and water (86 wt%) that undergoes thermally induced reversible and abrupt changes in its internal structure and mechanical elasticity (23-fold).

    • Koki Sano
    • , Naoki Igarashi
    •  & Yasuhiro Ishida
  • Article
    | Open Access

    Gaining control over crystallization processes is challenging. Herein, the authors describe a protocol for the controlled growth of DNA nanotubes by feedback regulation: the coupling of a reversible bimolecular monomer buffering reaction delivers the optimal monomer concentration and leads to reliable crystal growth in a simple manner.

    • Samuel W. Schaffter
    • , Dominic Scalise
    •  & Rebecca Schulman
  • Article
    | Open Access

    The development of techniques capable of orchestrating the assembly of living cells into multicellular ensembles with synergistic and function is challenge. Here, the authors construct algal or algal/bacterial cells-based core shell-like structure based on aqueous two-phase system for synergic photosynthetic H2 production.

    • Zhijun Xu
    • , Shengliang Wang
    •  & Stephen Mann
  • Article
    | Open Access

    Different to exploring molecular topology, the development of supramolecular topology has been limited due to a lack of reliable synthetic methods. Here, the authors describe a supramolecular strategy to access Möbius strips through bending and cyclization of twisted nanofibers self-assembled from chiral glutamate amphiphiles.

    • Guanghui Ouyang
    • , Lukang Ji
    •  & Minghua Liu
  • Article
    | Open Access

    The design of covalent macrocycles which show characteristic self-assembly behaviour and host-guest properties is challenging. Here, the authors demonstrate the synthesis of diphenylamine[n]arenes through a one-pot synthesis and demonstrate the π-π pi stacking of the non-planar rings as well as ethane/ethyne host-guest interactions.

    • Lijun Mao
    • , Yang Hu
    •  & Xueliang Shi
  • Article
    | Open Access

    Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.

    • Marius Wehner
    • , Merle Insa Silja Röhr
    •  & Frank Würthner
  • Article
    | Open Access

    Directly linked porphyrin dimers show intriguing electronic features but emphasis has been placed on planar monomeric units. Here, the authors report a Twisted-Planar-Twisted framework which can undergo a cis-trans transformation accompanied by a colour change in presence of methanol, making this framework applicable as a methanol sensor.

    • Qizhao Li
    • , Chengjie Li
    •  & Yongshu Xie
  • Article
    | Open Access

    Membraneless organelles are liquid-liquid phase-separated droplets whose behaviour can be regulated by chemical reactions, but this process is poorly understood. Here, the authors report model membraneless organelles based on coacervate droplets that show fuel-driven dynamic behaviour and concentrate functional RNA.

    • Carsten Donau
    • , Fabian Späth
    •  & Job Boekhoven
  • Article
    | Open Access

    Replicating the performance of protein water channels (aquaporins) in artificial one-dimensional channels are often synthetically challenging. Here, the authors show that porous organic cages allow water permeation on the same magnitude as that of aquaporins while effectively rejecting small ions.

    • Yi Di Yuan
    • , Jinqiao Dong
    •  & Dan Zhao
  • Article
    | Open Access

    Macroscopic architectures of covalent organic frameworks (COF) allow to fully exploit their chemical functionality and porosity but achieving three-dimensional hierarchical porous COF architectures remains challenging. Here, the authors present a COF/reduced graphene oxide aerogel which is synthesized by growing COF during a hydrothermal process along the surface of graphene sheets.

    • Changxia Li
    • , Jin Yang
    •  & Arne Thomas
  • Article
    | Open Access

    Molecular self-assembly provides the desired functions to substrates, but investigation and control of its dynamics is challenging for the large area over which it must be detected. Here the authors report the use of graphene field effect devices to monitor with sub-second time resolution the photoinduced supramolecular assembly of a spiropyran derivative on graphene, covering an area of 100 × 100 μm2.

    • Marco Gobbi
    • , Agostino Galanti
    •  & Paolo Samorì
  • Article
    | Open Access

    A key challenge in the self-assembly of block copolymers is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here the authors show the ring opening polymerization-induced crystallization-driven self-assembly of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures.

    • Paul J. Hurst
    • , Alexander M. Rakowski
    •  & Joseph P. Patterson