Physical sciences articles within Nature Communications

Featured

  • Article |

    Solid gold is most stable as a face-centred cubic structure, and stable colloidal gold with hexagonal close packing has not been produced. Huanget al.prepare square gold sheets with hexagonal close packing that are stable under ambient conditions.

    • Xiao Huang
    • , Shaozhou Li
    •  & Hua Zhang
  • Article
    | Open Access

    Temperature-controlled regulation of thermal conductivity is difficult to achieve because thermal properties do not change significantly through solid-state phase transitions. Here temperature control of thermal conductivities is demonstrated using liquid–solid phase transitions in a nanoparticle suspension.

    • Ruiting Zheng
    • , Jinwei Gao
    •  & Gang Chen
  • Article |

    Speckle patterns are a manifestation of decoherence and can result from two-particle interference. Here, the authors image atomic speckle for guided matter waves and link this to atom bunching in the second-order correlation function, suggesting potential use in squeezed-atom interferometry applications.

    • R.G. Dall
    • , S.S. Hodgman
    •  & A.G. Truscott
  • Article |

    Melting-related phenomena are of fundamental and applied interest, but the melting theory is poorly understood. Levitas and Samani develop an advanced phase-field theory of melting coupled to mechanics that resolves existing contradictions and reveals the features of melting phenomena.

    • Valery I Levitas
    •  & Kamran Samani
  • Article |

    Nanometallic optical antennas can concentrate light into a deep-subwavelength volume for sensor and photovoltaic applications. Junet al. demonstrate an optical antenna design that achieves a high level of control over fluorescent emission for a wide range of nanoscale optical spectroscopy applications.

    • Young Chul Jun
    • , Kevin C.Y. Huang
    •  & Mark L. Brongersma
  • Article
    | Open Access

    Theory and simulations predict scale-invariant concentration fluctuations during diffusion in liquids, but on Earth, large-scale fluctuations are damped by gravity. Microgravity experiments by Vailatiet al. reveal the scale-invariant nature of diffusion, associated with fractal fronts and long-ranged correlations.

    • Alberto Vailati
    • , Roberto Cerbino
    •  & Marzio Giglio
  • Article |

    Infrared cameras are used for night vision and in medical diagnostics, but currently only present monochrome images. Krishnaet al. demonstrate a monolithically intergrated plasmonic infrared quantum dot camera as a step towards coloured infrared imaging.

    • Sang Jun Lee
    • , Zahyun Ku
    •  & Sam Kyu Noh
  • Article
    | Open Access

    Electron–hole exchange interaction is an intrinsic property of semiconductors, which affects their fine structure. Brovelliet al. demonstrate a nanoengineering-based approach that provides control over the exchange interaction energy at nearly constant emission energy, which cannot be carried out using core-only nanocrystals.

    • S. Brovelli
    • , R.D. Schaller
    •  & V.I. Klimov
  • Article
    | Open Access

    Pattern-forming processes in simple fluids and suspensions are well understood, but displacement morphologies in frictional fluids and granular mixtures have not been studied extensively. Sandneset al. consider the effects of Coulomb friction and compressibility on the fluid dynamics of granular mixtures.

    • B. Sandnes
    • , E.G. Flekkøy
    •  & H. See
  • Article
    | Open Access

    In the pseudogap state of cuprates, although diamagnetic signals have been detected, a Meissner effect has never been observed. Morenzoni and colleagues probe the local diamagnetic response in the normal state of an underdoped layer showing that a 'barrier' layer exhibits a Meissner effect.

    • Elvezio Morenzoni
    • , Bastian M. Wojek
    •  & Ivan Božović
  • Article
    | Open Access

    Micron and submicron-sized magnetic platelets in a vortex configuration may be useful in micromagnetics and spintronics applications. Kammereret al. show that a fast unidirectional vortex core reversal process occurs when azimuthal spin wave modes are excited at GHz frequency.

    • Matthias Kammerer
    • , Markus Weigand
    •  & Gisela Schuetz
  • Article
    | Open Access

    Nanoantennas may be important for future photonic circuits; they combine an emitter or detector with free-space propagation of light. Dregelyet al. fabricate an array of 3D optical Yagi–Uda nanoantennas and show that radiofrequency antenna array concepts applied to the optical regime can provide improved directional properties.

    • Daniel Dregely
    • , Richard Taubert
    •  & Harald Giessen
  • Article
    | Open Access

    Observing superposition states of mesoscopic quantum systems is an ongoing challenge. Gerlichet al. report quantum interference of large tailor-made organic compounds, demonstrating delocalization and the quantum wave nature of entire molecules composed of up to 430 atoms.

    • Stefan Gerlich
    • , Sandra Eibenberger
    •  & Markus Arndt
  • Article |

    Protecting-group-free synthesis has received significant attention, but organolithium species react rapidly with ketones necessitating protection of the ketone carbonyl. Here, a flow-microreactor approach is described that allows protecting-group-free organolithium reactions in the presence of ketones.

    • Heejin Kim
    • , Aiichiro Nagaki
    •  & Jun-ichi Yoshida
  • Article |

    Bismuth ferrite has photoelectric properties that make it an attractive alternative for use in photovoltaic devices. Here, using photoelectric atomic force microscopy, the authors show that photogenerated carriers can be collected by the tip and suggest that this can be used in photoelectric applications.

    • Marin Alexe
    •  & Dietrich Hesse
  • Article
    | Open Access

    Embedding carbon fibres in polymer matrices provides significant gains in strength and stiffness. Here, the Raman G peak of carbon fibre is studied in relation to applied strain and referenced to graphene; the work could facilitate stress measurements of carbon fibre polymer composites.

    • Otakar Frank
    • , Georgia Tsoukleri
    •  & Costas Galiotis
  • Article |

    Monitoring the impact of annealing on nanometre-thick polymer layers provides new insight into the changes in the performance of macromolecular materials. Here, the authors present results showing a correlation between the deviations from bulk behaviour and the growth of an irreversibly adsorbed layer.

    • Simone Napolitano
    •  & Michael Wübbenhorst
  • Article |

    The formation of hydrophilic protein–protein interactions cannot be explained by charge–charge interactions. Here, molecular simulations reveal that water forms an adhesive hydrogen-bonded network between proteins, stabilizing intermediate states before the bound complex forms.

    • Mazen Ahmad
    • , Wei Gu
    •  & Volkhard Helms
  • Article |

    Single-molecule force spectroscopy is used to study single molecule interactions, but probing short-lived events is difficult. Here, a nanomechanical interface is developed, which allows the study of microsecond timescale interactions.

    • Mingdong Dong
    •  & Ozgur Sahin
  • Article |

    Skyrmions are particle-like topological entities in a continuous field that have a role in various condensed matter systems. Here, numerical methods are used to show that a chiral nematic liquid crystal could be used as a model system to facilitate direct structural investigation of Skyrmions.

    • Jun-ichi Fukuda
    •  & Slobodan Žumer
  • Article |

    Graphene and InAs nanowires are both promising materials for coherent spin manipulation, but coupling between a quantum system and its environment leads to decoherence. Here, the contribution of electron–phonon coupling to decoherence in graphene and InAs nanowire is studied.

    • P. Roulleau
    • , S. Baer
    •  & T. Ihn
  • Article |

    Cold ion traps have not previously been used to study sliding friction between crystal lattices. Here, Benassiet al. use simulations to show that cold ion traps could be used for detailed investigation of atomic scale friction.

    • A. Benassi
    • , A. Vanossi
    •  & E. Tosatti
  • Article
    | Open Access

    Metal-organic frameworks (MOFs) have potential catalysis, filtration and sensing applications, but device fabrication will require controlled MOF growth. Here, α-hopeite microparticles are used to achieve spatial control of MOF nucleation, and accelerate MOF growth.

    • Paolo Falcaro
    • , Anita J. Hill
    •  & Dario Buso
  • Article
    | Open Access

    The performance of micromechanical and nanomechanical resonators is often hampered by mechanical damping. In this study, the authors demonstrate a numerical solver for the prediction of support-induced losses in these structures and verify experimentally the fidelity of this method.

    • Garrett D. Cole
    • , Ignacio Wilson-Rae
    •  & Markus Aspelmeyer
  • Article
    | Open Access

    Multimode interference devices could allow the implementation of multiport circuits for quantum technologies. Here, quantum interference is demonstrated in 2×2 and 4×4 multimode interference devices, and a technique is reported to characterize such devices.

    • Alberto Peruzzo
    • , Anthony Laing
    •  & Jeremy L. O'Brien
  • Article
    | Open Access

    New memory devices are being developed to overcome the limitations of conventional silicon-based flash memory. Here, a non-volatile memory design is reported that uses a micromechanical cantilever to charge and discharge a floating gate, which controls charge transport through a carbon nanotube field-effect transistor.

    • Sang Wook Lee
    • , Seung Joo Park
    •  & Yung Woo Park
  • Article |

    The transformation of iminium ions to enamines has been used extensively in organocatalysis, but conversion of enamines to iminium species has not been exploited. In this study, oxidative enamine catalysis allows the conversion of enamines to iminium ions and the direct asymmetric β-functionalization of simple aldehydes.

    • Shi-Lei Zhang
    • , He-Xin Xie
    •  & Wei Wang
  • Article |

    Lenses are restricted by diffraction to imaging features roughly the size of visible wavelengths. Wanget al. develop a white-light nanoscope that uses optically transparent spherical silica lenses to virtually image, in the far-field, features down to 50 nm resolution.

    • Zengbo Wang
    • , Wei Guo
    •  & Minghui Hong
  • Article |

    Oxygen diffusion processes are critical for the catalytic action of manganites but a full understanding of these processes is elusive. The authors perform atomic resolution scanning tunnelling microscopy imaging of layered manganites and show oxygen and defect dynamics on these surfaces.

    • B. Bryant
    • , Ch. Renner
    •  & G. Aeppli
  • Article
    | Open Access

    Electronic excitations with energies near the superconducting energy gap are strongly affected by superconducting transitions. The authors show, with a comprehensive optical investigation, that excitations with energies up to two orders of magnitude greater are also affected by the transition.

    • A. Charnukha
    • , P. Popovich
    •  & A. V. Boris
  • Article
    | Open Access

    In molecular spintronics, the spin state of a molecule may be switched by changing the molecular structure. Here, the spin of a single-molecule magnet is switched by applying an electric current using a scanning tunnelling microscope, which may aid in information coding at the single-molecule level.

    • Tadahiro Komeda
    • , Hironari Isshiki
    •  & Masahiro Yamashita
  • Article |

    Quantum-enhanced measurements use quantum mechanical effects to enhance measurement sensitivity of classical quantities; but the required quantum states are generally highly entangled and difficult to produce. In this study, the use of entangled states is avoided allowing Heisenberg-limited measurements.

    • Daniel Braun
    •  & John Martin
  • Article |

    The construction of porous solids from discrete organic molecules usually involves the formation of regular porous crystals. In this study, a covalent scrambling reaction gives molecules with a range of shapes that do not pack effectively — manipulation of the reagent ratio allows fine control of porosity.

    • Shan Jiang
    • , James T. A. Jones
    •  & Andrew I. Cooper
  • Article |

    There has been recent progress in the synthesis of complex intertwined supramolecular topologies. In this study, Liet al.report the self-assembly of an intertwined structure based on a universal 3-ravel.

    • Feng Li
    • , Jack K. Clegg
    •  & George V. Meehan
  • Article |

    The unusual magnetic fields of Uranus and Neptune are important considerations when developing hydrodynamic models of the planetary interiors. In this study, molecular dynamics simulations are used to study how chemical processes could create the interior structures predicted from the planets' magnetic fields.

    • Ricky Chau
    • , Sebastien Hamel
    •  & William J. Nellis
  • Article |

    Water-soluble peptides with stable α-helical conformations are desirable for a range of applications, but incorporating charged residues to improve solubility usually leads to reduced helical stability. Here, polypeptides produced from amino acids with elongated charged side chains are found to be water soluble and exhibit very high helical stability.

    • Hua Lu
    • , Jing Wang
    •  & Jianjun Cheng