Photochemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Although multinuclear, supramolecular photocatalysts show promise in their ability to separate the processes required for lightdriven energy production into light absorption, charge separation and fuel production by individual parts of the molecule, mechanistic understanding of the performance limiting processes are lacking. Here the authors synthesize two new dinuclear catalysts and compare them to a benchmark through detailed spectroscopic studies, obtaining significant chemical insight.

    • Linda Zedler
    • , Pascal Wintergerst
    •  & Sven Rau
  • Article
    | Open Access

    The endoperoxides of β-carotene play a key role in signaling of photooxidative stress in plant cells and are regarded as the products of chemical deactivation of singlet oxygen. The authors show that these compounds are instead formed in a reaction between oxygen and β-carotene in their triplet states, revealing the importance of the triplet states in the photoprotection of photosynthetic apparatus.

    • Mateusz Zbyradowski
    • , Mariusz Duda
    •  & Leszek Fiedor
  • Article
    | Open Access

    Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.

    • Mohana Reddy Mutra
    •  & Jeh‐Jeng Wang
  • Article
    | Open Access

    The field of homogeneous metal- and photocatalysis typically uses one-photon-absorbing photosensitizers, which are highly functional, but require higher-energy light. Here the authors report a group of ruthenium polypyridyl complexes possessing two-photon-absorption capabilities, active with irradiation with lower-energy (740 nm) light.

    • Guanqun Han
    • , Guodong Li
    •  & Yujie Sun
  • Article
    | Open Access

    The photosystem II reaction center (PSII-RC) is a model system to understand the initial steps of photosynthesis, but its excited state dynamics is difficult to disentangle with most spectroscopic methods. Here the authors perform a two-dimensional electronic-vibrational spectroscopic study of PSII-RC, providing detailed insight into such dynamics and into the mechanism of charge separation.

    • Yusuke Yoneda
    • , Eric A. Arsenault
    •  & Graham R. Fleming
  • Article
    | Open Access

    Photodynamic therapy has been a promising technique for the treatment of tumours. In this manuscript, the authors report on the photoactivation of the osmium peroxo complex and its potential use for chemotherapy and photodynamic therapy under blue light irradiation against tumours in their hypoxic environment.

    • Nong Lu
    • , Zhihong Deng
    •  & Pingyu Zhang
  • Article
    | Open Access

    Type I photodynamic therapy (PDT) sensitizers show good hypoxia tolerance but only few strategies are available for the design of purely organic Type I photosensitizers (PS). Here, the authors use biotinylation as design strategy to obtain PS-Biotin sensitizers with high efficiency for the generation of superoxide anion radicals and singlet oxygen.

    • Jing An
    • , Shanliang Tang
    •  & Wen-Heng Zheng
  • Article
    | Open Access

    Being able to control motion at the molecular level is vital for many future developments in the molecular sciences. Here, the authors report the controlled forward and backward rotation of a molecular motor guided by external stimuli.

    • L. Pfeifer
    • , S. Crespi
    •  & B. L. Feringa
  • Article
    | Open Access

    A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Here the authors report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity.

    • Hangyeol Choi
    • , Gangadhar Rao Mathi
    •  & Sungwoo Hong
  • Article
    | Open Access

    Photocatalytic radical cascade reactions enable the facile construction of diverse cyclic compounds, though they rely on templated precursors. In this paper, the authors report on stereoselective intermolecular radical cascade reaction between tryptophan or ɤ-alkenyl substituted amino acids and acrylamides to synthesise multi-substituted trans-fused hexahydrocarbazoles or 1,3,5-trisubstituted cyclohexanes.

    • Jiang-Tao Li
    • , Jian-Nan Luo
    •  & Chun-Xiang Zhuo
  • Article
    | Open Access

    Label discrimination is challenging in fluorescence microscopy due to broad spectra and narrow lifetime distribution. Here, the authors introduce extra kinetic dimensions by illuminating reversibly photoswitchable fluorophores with different intensities, and discriminate 20 spectrally similar fluorophores.

    • Raja Chouket
    • , Agnès Pellissier-Tanon
    •  & Ludovic Jullien
  • Article
    | Open Access

    Photoinduced changes in transmission, reflection and scattering prevent conventional pump-probe spectroscopy to unambiguously assign the origin of spectral signatures. Ashoka et al. have developed an optical modelling technique to extract quantitative and unambiguous changes in the dielectric function from standard pump-probe measurements.

    • Arjun Ashoka
    • , Ronnie R. Tamming
    •  & Akshay Rao
  • Article
    | Open Access

    The photodissociation of transition metal carbonyls is involved in catalysis and synthetic processes. Here the authors, using semi-classical excited state molecular dynamics, observe details of the early stage dynamics in the photodissociation of Fe(CO)5, including synchronous bursts of CO at periodic intervals of 90 femtoseconds.

    • Ambar Banerjee
    • , Michael R. Coates
    •  & Michael Odelius
  • Article
    | Open Access

    An inorganic and robust photocatalytic system based on Mo-doped faceted BiVO4 particles exhibits a solar-to-chemical conversion efficiency of 0.29% for H2O2 generation, a new record among inorganic systems.

    • Tian Liu
    • , Zhenhua Pan
    •  & Kazunari Domen
  • Article
    | Open Access

    The electronic structures of photoactive proteins underlie many natural photoinduced processes. The authors, using UV liquid-microjet photoelectron spectroscopy and quantum chemistry calculations, determine electron detachment energies of the green fluorescent protein chromophore in aqueous solution, approaching conditions of the protein environment.

    • Omri Tau
    • , Alice Henley
    •  & Helen H. Fielding
  • Article
    | Open Access

    Chiroptical properties of amino acids are challenging to investigate in the gas phase due to the low vapor pressure of these molecules. Here the authors succeed in measuring circular dichroism active transitions and anisotropies in the ultraviolet range for several gas-phase amino acids, shedding light on the interactions between molecules and circularly polarized light that lead to chiral symmetry breaking.

    • Cornelia Meinert
    • , Adrien D. Garcia
    •  & Uwe J. Meierhenrich
  • Article
    | Open Access

    The development of complex molecular machinery requires a detailed appreciation of the factors that control energy pathways through the nanoscale scaffold. Here, the authors demonstrate that hetero-rotaxanes can be employed to create assemblies of different redox and photo-active components that enable selective tuning of energy transfer pathways.

    • Nicholas Pearce
    • , Katherine E. A. Reynolds
    •  & Neil R. Champness
  • Article
    | Open Access

    Photoredox catalysis can strongly reduce and cleave unactivated chemical bonds via photoinduced electron transfer. Here the authors use o-phosphinophenolate for photocatalytic C–F activation of a wide range of trifluoromethyl groups in trifluoroacetamides, trifluoroacetates, and trifluoromethyl(hetero)arenes to deliver corresponding difluoromethyl radicals.

    • Can Liu
    • , Ni Shen
    •  & Rui Shang
  • Article
    | Open Access

    Gaining in-depth understanding of photochemical processes is key for developing more sustainable and efficient chemical transformations. Here the authors show that under visible light photochemical conditions, iminoiodinanes undergo formation of triplet nitrenes or nitrene radical anions, depending on the use of a photosensitizer; These reagents are studied in amination reactions with olefins.

    • Yujing Guo
    • , Chao Pei
    •  & Rene M. Koenigs
  • Article
    | Open Access

    UVR8 is a plant photoreceptor that dissociates into monomers after sensing UV. Here, via ultrafast spectroscopy and computational calculations, the authors describe the dynamics of charge separation and charge neutralization in UVR8 and describe how these unzip interactions at the dimer interface.

    • Xiankun Li
    • , Zheyun Liu
    •  & Dongping Zhong
  • Article
    | Open Access

    Photoresponsive compounds have potential applications in various fields, including the development of smart materials and switches. Here the authors report a gold(I) complex that undergoes multiple photoinduced color changes upon excitation of light at specific wavelengths, offering an enhanced storage capacity towards optical memory devices.

    • Nathan Man-Wai Wu
    • , Maggie Ng
    •  & Vivian Wing-Wah Yam
  • Article
    | Open Access

    The photophysical mechanism by which nucleosides dissipate energy after UV light irradiation is still under debate. Here the authors, using ultrafast time resolved optical spectroscopies and quantum chemical computations, resolve the early steps of such mechanism in uridine and 5-methyluridine in aqueous solution.

    • Rocío Borrego-Varillas
    • , Artur Nenov
    •  & Giulio Cerullo
  • Article
    | Open Access

    Acyl radicals represent a reactive species that allow for aldehyde subunits to be nucleophilic instead of their typical electrophilic behavior; however, these species are difficult to access in mild conditions. Here the authors show a method to generate acyl radicals using only an organic photocatalyst and light, and these species are shown as competent nucleophiles in a variety of couplings.

    • Jianming Yan
    • , Haidi Tang
    •  & Jie Wu
  • Article
    | Open Access

    To address the shortcomings in the application of bioactive peptides as drugs, incorporation of unnatural amino acids (UAAs) has been used. Here, the authors report an ionic compound-promoted C-N cleavage of alkyl pyridinium to generate alkyl radicals upon excitation by visible light, and apply it for deaminative hydroalkylation of alkenes to synthesise diverse β-alkyl substituted UAAs.

    • Mengran Wang
    • , Chao Wang
    •  & Zhaoqing Xu
  • Article
    | Open Access

    Increasing the rigidity of a macromolecule while maintaining solubility is challenging. Here, the authors demonstrate covalent connection of two rigid-rod polymer chains with stiff connectors, leading to rigid ladder structures with well-defined conjugated rails.

    • Stefanie A. Meißner
    • , Theresa Eder
    •  & Sigurd Höger
  • Article
    | Open Access

    The Mizoroki–Heck reaction and its reductive analogue are staples of organic synthesis, but the ensuing products often lack a chemical handle for further transformation. Here the authors present a method to add a heterocycle and transformable halide across a double bond via iridium photocatalysis.

    • Shi-Yu Guo
    • , Fan Yang
    •  & Qing-An Chen
  • Article
    | Open Access

    Exciton-polaritons are typically formed in organic systems when the molecules are confined between metallic or dielectric mirrors. Here, the authors reveal that interactions between excitons and moderately confined photonic states within the bare organic film can also lead to polariton formation, making them the primary photoexcitation.

    • Raj Pandya
    • , Richard Y. S. Chen
    •  & Akshay Rao
  • Article
    | Open Access

    Energy band alignment theory is used to understand interface charge transfer in semiconductor/semiconductor junctions but many abnormal results cannot be well explained. Here, the authors demonstrate a Faradaic junction theory with isoenergetic charge transfer at semiconductor/semiconductor interfaces to explain these abnormal results.

    • Mingzhi Chen
    • , Hongzheng Dong
    •  & Zhigang Zou
  • Article
    | Open Access

    Molecular designs improving the performance of thermally activated delayed fluorescence (TADF) emitters are greatly desired for optoelectronic applications. The authors propose a molecular geometry with donor and acceptor moieties facing each other separated by an anthracene bridge, giving rise to hot exciplex states producing color pure and fast TADF emission.

    • A. Lennart Schleper
    • , Kenichi Goushi
    •  & Alexander J. C. Kuehne
  • Article
    | Open Access

    Oligofurans have attracted great attention because of their strong fluorescence, charge delocalization, and increased solubility. Here the authors show a bottom-up modular construction of chemically and structurally well-defined oligo(arylfuran)s by de novo synthesis of α,β′-bifuran monomers and late-stage bromination, stannylation and subsequent coupling reaction.

    • Yang Chen
    • , Pingchuan Shen
    •  & Shifa Zhu
  • Article
    | Open Access

    Many useful chemical scaffolds include carbon or nitrogen substitutions at two or three atoms away from benzene. Here, the authors show a unified hydroalkylation and hydroaminoalkylation protocol to access these structures via a regioselective photocatalytic addition to simple styrenes.

    • Zhao Wu
    • , Samuel N. Gockel
    •  & Kami L. Hull
  • Article
    | Open Access

    Commonly, large π-conjugated systems facilitate low-energy electronic transitions. Here, the authors demonstrate that the relief of excited-state antiaromaticity of the benzene core leads to large Stokes shifts, and allows the construction of emitters covering the entire visible spectrum without the need of extending π-conjugation.

    • Heechan Kim
    • , Woojin Park
    •  & Dongwhan Lee
  • Article
    | Open Access

    The generation of alkyl radicals through deoxygenation of abundant alcohols via photoredox catalysis is of interest. In this study, the authors report a one-pot strategy for visible-light-promoted photoredox coupling of alcohols with electron-deficient alkenes, assisted by carbon disulfide and triphenylphosphine.

    • Hong-Mei Guo
    •  & Xuesong Wu
  • Article
    | Open Access

    Radiationless relaxation is ubiquitous in natural processes and often involves excited states that are difficult to observe. Here the authors, combining X-ray transient absorption spectroscopy and computations, provide insight into the photoinduced dynamics in pyrazine and the involvement of an optically dark 1Au(nπ*) state.

    • Valeriu Scutelnic
    • , Shota Tsuru
    •  & Stephen R. Leone
  • Article
    | Open Access

    Spatiotemporal dynamic of charge carriers is commonly studied with optical or photoconductivity measurements, yet these techniques come with their own limitations. To circumvent these limits, the authors probe the free-carrier diffusion dynamics of microsecond lifetimes via laser-illuminated microwave impedance microscopy.

    • Xuejian Ma
    • , Fei Zhang
    •  & Keji Lai
  • Article
    | Open Access

    Catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. Here the authors show an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by FeI2, P(V)/P(III) and photoredox catalysis that avoids the production of byproducts.

    • Yunyun Ning
    • , Shuaishuai Wang
    •  & Jin Xie
  • Article
    | Open Access

    The generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here, the authors show the treatment of S-(alkyl) thianthrenium salts, which can generate non-stabilized alkyl radicals as key intermediates that enable controlled and selective reactions under mild photoredox conditions.

    • Cheng Chen
    • , Zheng-Jun Wang
    •  & Zhuangzhi Shi